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Atmospheric chemistry is interconnected with 
climate and ecosystems, affecting food security

Ø Air pollutants interact 
with radiation and other 

climatic conditions, 
perturbing biosphere-

atmosphere interactions 
and vegetation growth.

Ø Air pollutants (e.g., 
ozone, O3) injure 

vegetation, reduce crop 
yields and nutritional 

value of certain foods.

Figure sources: 
IPCC, NPS, Shao et al. (2020), X. Zhang et al. (2021)
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Ø Air pollutants acidify and 
fertilize ecosystems (e.g., via 

nitrogen and sulfur deposition) 
from where pollutants and their 

precursors are emitted. 



Heterogeneity in air pollution and food security levels; 
and disparities in ground-monitoring capabilities

Observed total inorganic N wet deposition (Q. Zhang et al., 2021)

waqi.info

LIS/Noah-MP is run with dynamic 
vegetation on, coupled with WRF-Chem, 

evaluated/constrained with data from 
multiple satellites, to address a range of 

interdisciplinary science questions.
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Population facing food crisis (FSIN, 2022)

Air pollution is a growing 
concern in many countries where 

water and food security levels 
are low and in-situ observations 
are sparse. Remote sensing and 
Earth system modeling products 

are highly valuable.



WRF-Chem 
Base:

Aerosol precursor emission impacts 
on atmosphere-biosphere interactions

Outdated anthropogenic 
NOx emissions (kg m-2 s-1)

Ø Referring to aircraft, ship, AERONET and GOCI observations, updating emissions 
of aerosol precursors such as NOx with OMI NO2 data improved WRF-Chem 
performance on a cloudy day in May 2016 during the KORUS-AQ campaign.

Ø Emission-induced aerosol changes interact with radiation and surface 
temperature, affecting GPP and ET which together indicate plants’ resilience to 
environmental changes (i.e., water use efficiency). 4

JGR, 2020

Sensitivity:



Ø Compared with SMAP, the model’s SM 
dynamic range is smaller; higher r values 
and lower ubRMSE in N. China Plain than in 
S. Korea dense vegetation areas.

Ø Model overall under-/over-predicted LAI 
around China’s Yellow/Yangtze river basins, 
similar to results in previous Noah-MP 
studies.

for p<0.05

ubRMSECorrelation rSMAP surface SM LIS/Noah-MP

(m3 m-3)
(m3 m-3)

MODIS LAI LIS/Noah-MP

Yellow

Yangtze

Noah-MP soil moisture (SM) and leaf area index (LAI) 
evaluated with satellite data, May 2015-2018
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Assessing soil moisture 
impacts on O3 dry deposition

Archibald et al., 2020
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Wesely (WRF-Chem default, multiplicative)
Stomatal:
Cuticular:

Dynamic (coupled with photosynthesis)

Stomatal:

Cuticular:

ACP, 2022

i for sunlit & shaded leaves
accounting for water stress, 
leaf area index, CO2…

Ø Updated dry deposition scheme (Wesely à Dynamic)

Ø Estimated O3 vegetation impacts using model-based 
O3 metrics and land cover/crop specific dose-response 
functions

Ø Assimilated SMAP soil moisture into Noah-MP



Impact assessment based on modeled stomatal O3 
flux, which correlates with GPP and SIF

Ø Wheat relative yield loss due to O3, estimated based on modeled (with dynamic dry 
deposition scheme and SMAP assimilation) POD, is ~4% on average. 

Ø Flux-based metrics are more biologically relevant and preferred for O3 vegetation 
impact assessments. The performance of modeled O3 fluxes is hard to assess due 
to very sparse measurements but may be inferred by model performance on carbon 
fluxes (e.g., GPP) which can be derived from satellite data. Hourly SIF data from the 
newly launched TEMPO are of interest.

SMAP L4C GPP (gm-2 d-1)

no DA

DA-no DA

GPP (gm-2 d-1)Fs[ozone] (nmol m-2 s-1)

Relative Yield [wheat] = −0.0064 POD3 + 0.9756
where POD3 is derived from Fs
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Ø Biogenic emission schemes (VOC, 
NO, HONO) were also updated

Ø Applied FpO3 and FcO3 to photosynthesis 
and stomatal conductance rates, 
respectively (Lombardozzi et al., 2015) 

Δ2m T (°C)

Ø This result is based on “coupled” simulations. LIS/Noah-MP offline simulations 
may also be set up to help understand links between O3 impacts and climate 
change at larger spatiotemporal scale while at lower computational costs.

Follow-up study: dynamically modeling O3 impact 
on vegetation for 2018-2022 over NE US

8

6-19 July 2022 daytime
ΔGPP (%) ΔLAI (%)

Δtranspiration (%)

CUO: cumulative O3 uptake
a, b: land cover dependent 

Ø O3 impacts GPP more strongly than 
transpiration and ET, reducing plants’ 
water use efficiency. 



MEGAN biogenic VOC 
emissions: Introduced a 

drought stress activity factor
 γd (Jiang et al., 2018) depending on the 
SM factor controlling stomatal 
resistance (β) and maximum 

carboxylation rate (Vcmax)

Soil NO emissions (Hudman et al., 2012)

Biome-based emission factors 
adjusted by soil temperature T 
and water-filled pore space θ 

(SM/porosity)

Soil HONO emissions 
Derived from soil NO 
emissions and biome 

dependent scaling factors
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Biogenic emissions schemes updated: 
Now sensitive to multiple environmental stresses



NO2 columns from model (L) and TROPOMI (R), %
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Model helps connect interannual variability 
(MJJ 2022-2018) of NO2 fields with emissions

Daytime soil NO (L), anthropogenic (M) and biomass burning (R) NOx emissions, mol km-2 h-1

SMAP morning SM, m3 m-3

Modeled daytime SM/porosity

Ø Temporal changes in biogenic emissions, along with other (e.g., fire, anthropogenic, 
lightning) emissions and processes, contribute to interannual differences of NO2 
columns from model, that are overall qualitatively consistent with TROPOMI-based.

Ø Model uncertainty can be reduced by parameter/input tuning and land DA.

Ø Water and heat (not 
shown) stresses overall 
have +impacts on soil 
NO (&HONO) emissions.

 



Ø Three Noah-MP (“traditional” model structure) applications were presented, that 
advance our understanding of the connections between atmospheric chemistry 
and land surface conditions. In these studies, Noah-MP results were 
evaluated/improved by satellite data. Changes were made to Noah-MP related 
code/table as well as routines (e.g., emissions, deposition) in WRF-Chem.

Ø Interested in including nitrogen dynamics, which exists in other land models 
such as JULES and CLM for long. Cai et al. (2016) started to add such 
capability where the magnitude and spatiotemporal variability in nitrogen inputs 
(from deposition, fertilizer) may be better represented.

Figure source: GSFC food security site
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Summary and thoughts on future directions


