

Forward modeling with NoahMP within a data assimilation framework

Jawairia Ahmad^{1,2}, Bart Forman¹, Sujay Kumar³, Ned Bair⁴ ¹University of Maryland, ²Centre for Water Informatics and Technology, LUMS ³NASA Goddard, ⁴UC Santa Barbara

 ΔT_b assimilation Results

Soil Moisture assimilation Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Data Assimilation

AMSR/

Observation

(Image: © NASA)

NASA Land Information System (LIS)

Software framework for high performance land surface modeling and data assimilation developed by NASA

Ensemble Kalman Filter (EnKF)

Data Assimilation

EnKF

 ΔT_b assimilation Results

Soil Moisture assimilation Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Data Assimilation- Ensemble Kalman Filter (EnKF)

Requirements: forward model, observation operator, and error characteristics of the modeled and observed states

Two main steps: 1) State propagation (using the forward model) 2) State update

Error Covariance

Uncertainty and error is represented via error covariance matrices for both modeled estimates and observations

Assumptions of EnKF

- 1) unbiased, linear forward model
- 2) unbiased, linear observation operator
- 3) jointly Gaussian and mutually independent observation and model errors
- 4) spatiotemporally uncorrelated errors

Data Assimilation

EnKF

 ΔT_b assimilation Results

State vector =

 y_1 and y_2

variables

is non-zero

 $y_2 = 0$

Generate

Propagate

and y_2

 y_1 and y_2 are two

Error covariance

Initializing y_1 and

ensembles for y_1

ensembles using

forward model

٠

٠

٠

•

٠

Soil Moisture assimilation Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Data Assimilation-Ensemble Kalman Filter (EnKF)

State vector estimated!

Data Assimilation

Snow mass (SWE) estimation via assimilation of PMW Δ Tb

EnKF

ΔT_b assimilation Results

Soil Moisture assimilation Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Assimilation framework

1-D assimilation	20 replicate ensemble
Land surface model	Noah-MP (ver. 3.6)
Boundary conditions	MERRA2
Observations	Advanced Microwave Scanning Radiometer-2 ∆Tb
Non-linear observation operator	Support Vector Machine regression
Open Loop (OL)	model-only simulation run
Data assimilation (DA) runs	standard, data-thinning, seasonal
Grid size	0.25° x 0.25° (~25km x 25.5km)

SVM Predicted

ΔTb

Compute innovation

PMW ΔTb obs. + obs. error

Well-trained

SVMs

Step-1: Support Vector Machine Regression (Training & Prediction)

 ΔT_b assimilation

Results

Soil Moisture

assimilation

Results

Snow mass (SWE) estimation via assimilation of PMW ΔTb

Salient findings:

- ∆Tb assimilation improved: Bias at 71% and RMSE at 66% of locations with in-situ measurements
- Assimilation performance generally degraded during wet snow conditions
- Increased uncertainty in state ensemble after assimilation
- Ensemble mean after assimilation more consistent with evaluation dataset

Figure: Timeseries of Noah- MP_{OL} and Noah- MP_{DA} SWE estimates (standard assimilation) vs. SNOWPACK (AKAH snow depth-based) SWE for the 2016-2017 snow season. Shaded regions represent ensemble mean $\pm 2^*$ std (rejection probability= 95%).

Limitation:

During snow ablation season, PMW brightness temperature signal contained relatively higher information not related to snow mass

Ahmad, J.A., Forman, B.A., Bair, E., and Kumar, S.V., 2021. Passive microwave brightness temperature assimilation to improve snow mass estimation across complex terrain in Pakistan, Afghanistan, and Tajikistan. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, pp.8849-8863, doi: 10.1109/JSTARS.2021.3102965.

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

May 2023

Soil moisture (SM) estimation via assimilation of SM retrievals

Assimilation framework

			1			
	1-D assimilation	20 replicate ensemble	I	land surface model		
ΔT_b assimilation Results	Land surface model	Noah-MP (ver. 4.0.1)	ensemble generated	ensemble		SMAP Passive Microwave
Soil Moisture assimilation Bour cond Results Obset Conclusions Open Data (DA)	Boundary conditions	MERRA2 / IMERG	via perturbations	generated via perturbations	SMAP SM + obs. error	Soil Moisture Retrieval
	Observations	Soil Moisture Active Passive (SMAP) SM retrieval		Innovation -		
	Open Loop (OL)	model-only simulation		Posterior SM		
	Data assimilation (DA) run	CDF matching No CDF matching				
Future work	Grid size	0.05° x 0.05° (~5km x 5.1km)	 			
J. Ahmad NoahMP Workshop	Study period	2015-2020	l			

 ΔT_b assimilation Results

Soil Moisture assimilation

Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Soil moisture (SM) estimation via assimilation of SM retrievals

TERSIT

 ΔT_b assimilation Results

Salient findings:

Limitation:

Mean bias reduced by 8.4%

RMSE reduced by 9.4%

Evaluation with in-situ meas, across Tibetan Plateau

Assimilation occurred during <10% of the total period

Biases due to unmodeled hydrologic phenomenon (i.e.,

Evapotranspiration visibly improved across irrigated areas

irrigation) were corrected through assimilation

improved vegetation estimation (carbon cycle)

Soil Moisture assimilation

Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Soil moisture (SM) estimation via assimilation of SM retrievals

Ahmad, J.A., Forman, B.A. and Kumar, S.V., 2022. Soil moisture estimation in South Asia via assimilation of SMAP retrievals. Hydrology and Earth System Sciences, 26(8), pp.2221-2243, doi: 10.5194/hess-26-2221-2022.

 ΔT_b assimilation Results

Soil Moisture assimilation

Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Conclusions

Snow mass:

- passive microwave radiation exhibited potential in improving snow mass estimation across complex terrain during snow accumulation season
- difficult to extract snow mass-relevant information during ablation season

Soil moisture:

- assimilation improved soil moisture estimation across croplands by correcting biases due to irrigation
- snow/ice-covered and frozen areas unaffected by soil moisture assimilation

Limitations

- Useful for state specific applications only
- Water budget issues

Funded by the NASA High Mountain Asia Team 2016 and 2018

 ΔT_b assimilation Results

Soil Moisture assimilation

Results

Conclusions

Future work

J. Ahmad NoahMP Workshop May 2023

Future directions

- State specific approach for balancing the water cycle
- Spatial distribution of water across irrigated areas
- Quantification of irrigation using an inverse method?
- Flood mapping using an assimilation framework
- Improvements in land surface model physics

