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Hurricanes are warm-core low-pressure systems with destructive winds and
torrential rainfall.
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Hurricane Harvey Storm Track (2017)
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Extreme precipitation and flash flooding caused by hurricane Harvey have
led to major damages to Houston and surrounding areas.
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Record-breaking hurricane Harvey poured more than 1 meter rainfall over
some parts of Houston during 25—-30 August 2017.
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Research on Harvey Rainfall (Impacts of anthropogenic forcing)

* Assessing the present and future probability of Hurricane
Harvey's rainfall (Emanuel 2018)

* Quantitative attribution of climate effects on Hurricane Harvey's
extreme rainfall in Texas (Wang et al. 2018)

* Attribution of extreme rainfall from Hurricane Harvey, August
2017 (Van Oldenborgh et al. 2018)

* Hurricane Harvey links to ocean heat content and climate change
adaptation (Trenberth et al. 2018)



What was the role played by urbanization in modulating the rainfall
associated with hurricane Harvey?

Before Hurricane Harvey After Hurricane Harvey



1. How can we quantify the role of urbanization in
shaping rainfall caused by hurricane Harvey?



Three spatial domains d01, d02 and d03 in the WRF simulations with 12km,
4km and 1.33 km spatial resolution respectively.

WPS Domain Configuration

Physics Options
34°N
Microphysics WSM 6-class graupel scheme
399N Surface layer Monin-Obukhov scheme
Boundary layer scheme Mellor-Yamada-Janjic TKE scheme
30°N Cumulus parameterization None for d02 and d03, and the
Betts-Miller-Janjic scheme for d01
— Longwave radiation Rapid Radiative Transfer Model
Shortwave radiation Dudhia scheme
26°N Land use NLCD2011 (40 categories)
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The urban land-use categories are replaced by “croplands” in the “NoUrban”
experiments.

30N

ial BarrenLand Deciduous Evergreen MixedForest Shrub Grassland Pasture/Hay Crops Wetland  EH Wetland

Urban minus NoUrban = Impacts of Urban

Urban experiments: Switch on Building Energy Model (BEM)

Initial and boundary forcing: North American Regional Reanalysis (NARR)
Landuse Landcover data: National Land Cover Database (NLCD) 2011
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The urbanization led to an increase in low-level convergence, upper-level divergence
and enhanced vertical velocities.
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Urban Impacts on Rainfall Caused by Hurricane Harvey

Dynamic

Increased
urban
roughness

Increased
surface
temperature
(UHI)

Increased
frictional
velocity

Increased PBL height
drag over and
the city atmospheric
instability

Increased low level
convergence, upper level
divergence and updraft in

the eastern side of Houston

Increased rainfall and shift Increased rainfall in
of rainfall maxima to the <:I Houston

east side of Houston




2. Do the research findings hold for other cities and
hurricanes?



We tested another five hurricanes that influenced Charlotte, NC.

IVAN (2004)
ALBERTO (2006)
FLORENCE (2018)
MICHAEL (2018)
ZETA (2020)
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NoUrban
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We performed similar
WRF-urban experiments
iIn Charlotte, North

Carolina.
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Overall, urbanization
enhances hurricane
precipitation in Charlotte.
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Summary

* Urbanization strongly exacerbated the impacts that the storms
have had in terms of rainfall.

* Overall, the results hold for storms that made landfall over
Houston and Charlotte.

* More experiments are being performed to test the robustness of
our findings.

Zhang W, Villarini G, Vecchi GA, Smith JA (2018) Urbanization exacerbated the rainfall and flooding caused by
hurricane Harvey in Houston. Nature 563:384-388.

Isla, S., Villarini G, Zhang W, (2023) Quantification of the Role of Urbanization in Changing the Rainfall
Associated with Tropical Cyclones affecting Charlotte, North Carolina, Urban Climate, under revision.
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Why does urbanization matter?

NLCD40

40,1, 'SHDFAC NROOT RS RGL HS SNUP MAXALB LAIMIN LAIMAX EMISSMIN EMISSMAX ALBEDCMIN ALBEDOMAX ZOMIN ZoMax ZTOPV ZBOTV'

1 .70, 4, 125., 30., 47.35, 0.08, 52., 5.00, €.40, .950, .950, ¥12; $12; .50, .50, 17.00, 8.50, 'Evergreen Needlelsaf Forest'
2, .95, 4, 150., 30., 41.69, 0.08, 3555 3.08, 6.48, .950, .950, w125 2125 .50, .50, 35.00, 1.00, 'Evergreen Broadleaf Forest'
3, .70, 4, 150., 30., 47:35, 0.08, 54., 1.00, 5.16, .930, .940, .14, 215, .50, .50, 14.00, 7.00, 'Deciduous Needleleaf Forest'
4, .80, 4, 100., 30., 54.53, 0.08, 58., 1.85, 3.31, .930, .930, .16, .17, .50, .50, 20.00, 11.50, 'Deciduous Broadleaf Forest'
5, .80, 4, 125., 30., 51.93, 0.08, 53., 2.80, 5.50, .930, .970, .17, .25, .20, .50, 18.00, 10.00, 'Mixed Forest'

€, .70, 3} 300., 100., 42.00, 0.03, €0., 0.50, 3.66, .930, .930, .25, .30, .01, .05, 0.50, 0.10, 'Closed Shrubland'

7; 70, 3% 170., 100., 39.18, 0.035, €5., 0.60, 2.60, .930, .950, 222 .30, .01, .06, 0.50, 0.10, 'Open Shrubland'

&, .50, 3, 70., 65., 54.53, 0.04, 50., 0.50, 3.66, .930, .930, .25, .30, .01, .05, 0.00, 0.00, 'Woody Savanna'

9, .50, 3, 70., €5., 54.53, 0.04, 50., 0.50, 3.66, .920, .920, .20, .20, .15, .15, 0.50, 0.10, 'Savanna'

10, .80, 3, 40., 100., 36.35, 0.04, 70., 0.52, 2.90, .920, .960, .19, .23, .10, .12, 0.50, 0.10, 'Grassland’

11, -60, 2, 100., 30., 51.93, 0.02, 50., 1.75, 5724 -950, -950, 214, 214, =30, =30, 0.50, 0.10, !'Permanent Wetland'
|12, .80, 3} 40., 100., 36.25, 0.04, €6., 1.50, 5.68, .920, .985, 115, 23, .05, .15, 0.50, 0.10, 'Cropland’

13, 210, 1, 200., 999., 999.0, 0.04, 36., 1.00, 1.00, 880, 880, 215, 215, .50, .50, 0.00, 0.00, "Urban and Built-Up'

14, .80, 3; 40., 100., 36.25, 0.04, €6., 2.29, 4.29, .920, .980, .18, 223, .05, .14, 0.50, 0.10, 'Cropland / Natural Veg. Mosaic'
15, .00, 1, 999., 999., 999.0, 0.02, 82., 0.01, 0.01, .950, .950, +55, .70, 0.001, 0.001, 0.00, 0.00, 'Permanent Snow'

1lse, .01, 1, 9%9., 999., 999.0, 0.02, 75., 0.10, 0.75, .900, .900, .38, .38, .01, .01, 0.02, 0.01, 'Barren / Sparsely Vegetated'
17; .00, 0, 100., 30.; 51.75, 0.01, 70., 0.01, 0.01, .980, .980, .08, .08, 0.0001, 0.0001, 0.00, 0.00, 'IGBP Water'

18, .00, o, 999., 999., 999.0, 999., 999., 999.0, 999.0, 9g99., 9959.0, 999.0, 999.0, 999.0, 999.0, 0.00, 0.00, 'Unclassified’

1s, .00, O, 999., 999., 999.0, 999., 99%., 999.0, 999.0, 999., 999.0, 999.0, 999.0, 999.0, 999.0, 0.00, 0.00, 'Fill Value'

20, .00, o, 999., 999., 999.0, 999., 999., 999.0, 999.0, 999., 99%.0, 999.0, 999.0, 999.0, 999.0, 0.00, 0.00, 'Unclassified’

21, .00, o, 100., 30., 51.17S, 0.01, 70., 0.01, 0.01, .980, .980, .08, .08, 0.0001, 0.0001, 0.00, 0.00, 'Cpen Water'

22, .00, s I 999., 999., 999.0, 0.02, 82+, 0.01, 0.01, .950, .950, .55, 270, 0.001, 0.001, 0.00, 0.00, 'Perennial Ice/Snow'

23 #30, 1, 200., 999., 999.0, 0.04, 46., 1.00, 1.00, .880, .880, .20, .20, .50, .50, 0.00, 0.00, 'Developed Open Space'

24, W27, X, 200., 999., 999.0, 0.04, 46., 1.00, 1.00, .880, . 880, .20, .20, .70, .70, 0.00, 0.00, "Developed Low Intensity'
25, .02, 1, 200., 999., 999.0, 0.04, 46., 1.00, 1.00, .880, .880, .20, .20, 1.5, 1.5, 0.00, 0.00, 'Developed Medium Intensity'
26, .11, 1, 200., 999., 999.0, 0.04, 46., 1.00, 1.00, .880, .880, .20, .20, 2.0, 2.0, 0.00, 0.00, 'Developed High Intensity'
27, .01, 1, 999., 999., 999.0, 0.02, 15., 0.10, 0.75, . 900, .900, .38, .38, .01, .01, 0.02, 0.01, '"Barren Land'

28, .80, 4, 125., 30:; 54.70, 0.08, 567, 1.00, 5.16, .930, .940, .14, 17; .50, .50, 20.00, 11.50, 'Deciduous Forest'

29, .95, 4, 140., 30, 44.00, 0.08, 42, 3.08, €.48, .950, .950, 12, :12; .50, .50, 17.00, 8.50, 'Evergreen Forest'

30, .80, 4, 12s., 30., 51.93, 0.08, 53., 2.80, 5.50, .930, .970, A7; .25, .20, .50, 18.00, 10.00, 'Mixed Forest'

31, .70, 3, 170., 100., 39.18, 0.035, €5., 1.00, 4.00, .930, .950, .16, .30, .01, .04, 0.50, 0.10, 'Dwarf Scrub'

32, .70, 3, 300., 100., 42.00, 0.03, €0., 0.50, 3.€6, .930, .930, .22, .30, .01, .05, 0.50, 0.10, 'Shrub/Scrub’

33 .80, 3} 40., 100., 36.35, 0.04, 70., 0.52, 2.90, .920, .960, .19, 223 .10, 12, 0.50, 0.10, 'Grassland/Herbaceous'

34, .60, 2, 40., 100., €0.00, 0.01, 8., 1.50, 5.65, .950, .950, .14, .14, .20, .20, 0.50, 0.10, 'Sedge/Herbaceous'

35, .60, 2, 40., 100., 60.00, 0.01, 8., 1.00, 2.00, .950, .950, #31; #31; .01, .01, 0.00, 0.00, 'Lichens'

36, .60, 2, 40., 100., 60.00, 0.01, €8., 1.00, 2.00, .950, .950, .24, .24, .01, .01, 0.00, 0.00, 'Moss’'

37, .80, 3, 40., 100., 36.25, 0.04, €6., 1.56, 5.68, .920, .985, .17, .23, .05, .15, 0.50, 0.10, 'Pasture/Hay"

38, .80, 3, 40., 100., 36.25, 0.04, €6., 1.5¢, 5.68, .930, .985, .20, .25, .02, .10, 0.50, 0.10, 'Cultivated Crops'

39, .60, 2, 100., 30, 51.93, 0.02, 50., 0.70, 3.50, .950, .950, .14, .14, .40, .40, 20.00, 11.50, 'Woody Wetland'

40, .60, S 40., 100., €0.00, 0.01, 68., 0.70, 3.50, .950, .950, 127 .12, .20, .20, 0.50, 0.10, 'Emergent Herbaceous Wetland'



# The parameters in this table may vary greatly from city to city.

# The default values are probably not appropriate for any given city.
# Users should adapt these values based on the city they are working
# with.

# Uzban Parameters depending on Urban type

# UsSes
DDZR: 0.05, 0.05, 0.0S, 0.05
Number of urban categories: 2
#
P 4 DDZB: Thickness of each building wall layer [ = ]
y X $ This is curzently NOT a function urban type, but a function
# Where there are multiple columns of values, the values refer, in : of the mumber of lagers. Humber of lapers smst be 4; for .now:
# oxder, to: 1) Low density residential, 2) High density residential, $ (3£ _urban_physics=1)
# and 3) Commercial: I.e.: #
#
$# Index: 1 2 2 DDZB: 0.05, 0.05, 0.0S5, 0.05
# Type: Low-dens Res, Hi-dens Res, Commercial 3
# # DDZG: Thickness of each ground (road) layer [m ]
# This is currently NOT a function urban type, but a function
2 # of the number of layers. XNumber of layers must be 4, for now.
# ZR: Roof level (building height) [ =] : (sf_urban physics=l)

2 (sf_urban_physics=1)

DD2G: 0.05, 0.25, 0.50, 0.75
ZR: §.0, 7.5, 1l0.0

#
$ # BOUNIR: Lower boundary condition for roof layer temperature [ l: Zero-Flux, 2: T = Constant ]
# SIQE_ZED: Standard Deviation of roof height [ = ] # {sf_urban physics=l)
2 (sf_urban_physics=l) s
EOUNDR: 1
SIQM_ZED: 1.0, 3.0, 4.0
#
F # BOUNDB: Lower boundary condition for wall layer temperature [ l: Zero-Flux, 2: T = Comstant ]
# ROOF_WIDTH: Roof (i.e., building) width [ = ] : {sf_ucban_physics=l)
b (sf_urban_physics=1)
BOUNDB: 1
ROOF_WIDTH: 8.3, 5.4, 10.0
#
F # BOUNDG: Lower boundary condition for ground (road) layer temperature [ 1: Zero-Flux, 2: T = Comstant ]
# ROAD WIDTE: zxoad width [ = ] # (sf_urban_physics=l)
= 2 #
# (sf_urban_physics=l)
# BOUNDG: 1
ROAD WIDTH: 8.3, 5.4, 10.0 #
# Ch of Wall and Road [ 1: M-O Similarity Theory, 2: Empirical Form of Nazita et al., 1557 (reccamended) ]
: # (sf_urban_physics=l)
#
# AH: Anthropogenic heat [ W m([-2} ]
# (sf_urban_physics=l) CH_SCHEME: 2
b
#
= # Surf and Layer T [ 1: 4-layer model, 2: Force-Restore methed ]
AH: 20.0, 50.0, S0.0 $ {s£_urban_physics=1)
#
# TS_SCHEME: 1
# ALH: Anthropogenic latent heat [ W m([-2} ] s
# (sf_urhan physics=l) # AHOPTION [ O: No anthropogenic heati 1: pogeaic: Beating willi be sddediite Seasible’ et Fluxiterm’)
2 # (sf_urban_physics=l)
#

ALH: 20.0, 25.0, 40.0

2
4 AKANDR URBAN: Coefficient modifving the Kanda aooroach to computina



The city led to an increase in roughness length, leading
to an increase in friction velocity and drag over the city.

Friction Velocity Roughness Length Bowen Ratio Boundary Layer Height
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5 (a) Vertical velocity (m s x 10?) along y = 50 km . (f) Cloud waler mixing ratio (g kg™)
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Figure 10.10 Numerical simulations ol the impacts ol urban heating (circular dolted region between 40-60 ki
on the x axis) in a dry (left panels) and moist (right panels) atmosphere. Left panels: (a) vertical velocity (ms™),
(b) perturbation wind vector through and downwind of the urban area along the centreline of the domain. (c)
plan view of the wind vector perturbation. (d) plan view of potential temperature perturbation, (¢) vertical
velocity field at a height of | km. Right panels: (f) cloud water mixing ratio (g kg '), (g) rainwater mixing ratio
(g ke 1), () vertical velocity (m s ') and (i) temperature fields along the simulation centre line 3 hours into a
moist simulation. Mcan horizontal wind speed is 4 m s™ and considered to be constant with height for all cases
(Source: Han and Baik. 2008: © American Meteorological Society, used with permission).

Enhanced updrafts and
clouds are found in the
downwind of the urban area.
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Basin boundaries of the five watersheds considered in this study, together
with their United States Geological Survey (USGS) station ID numbers.

i

53
i
A

G i ’ﬁ . S . a"“
A . an S & AP e =
R R > T s

08068740

Impervious
area

- 100%

0%

26



The annual maximum of daily
discharge can be well
represented by population,
which is used as a proxy of
urbanization.
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Risk ratio = P1/P2

Urbanization greatly
increase the probability of
extreme discharge at
almost all the basins.
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