

Accuracy of Surface and Root-zone Soil Moisture Analysis from Three Modeling systems During the 2022 Texas Drought

Farhad Hassani¹, Yu Zhang¹, Yanjun Gan¹

¹Department of Civil Engineering, University of Texas at Arlington,

Arlington, Texas

Background and Motivations

- Drought intensity often gauged using soil moisture anomalies
- Several soil moisture products are available for US
 - NLDAS-2
 - National Water Model
 - Other regional models
- Existing Moisture products exhibit limitations
 - Long latency (NLDAS-2)
 - Errors in historical and real-time forcings
 - Inadequate physics of land surface models

Objectives

- Develop new soil moisture and anomalies product for State of Texas
- Compare products with existing ones
 - NLDAS-2
 - National Water Model
- Determine combined impacts of
 - Improving seasonal vegetation phenology
 - Correcting biases in historical precipitation

- Configuration of UTA-LIS and workflow
- Improvements to forcing and vegetation phenology
- Cross-comparisons of soil moisture norm and anomaly products from three sources
 - NLDAS-2
 - National Water Model (NWM)
 - UTA-LIS
- Key findings and next steps

UTA-LIS

- Modeling system: NASA Land Information System (LIS) 7.3
- Forcing: NLDAS-2 (except precipitation)
- Precipitation: Modified AORC
- Land area index (LAI): Improved LAI
- Soil texture data source: STATSGO
- Spatial resolution: 4 km x 4 km
- Temporal resolution: 1 hours
- Model spin up: twice from (1980 2020)
- Simulation: 01/01/1980 08/01/2022

Adjustment of Precipitation Product

- NLDAS-2 precipitation product
 - Based on gauge analysis
 - Severely biased for heavy rain

Hourly AORC for each pixel in Texas is corrected to match daily PRISM accumulations

Improving Vegetation Phenology

 Comparison of NLDAS-2 and Noah-MP LAI against MODIS product -> former more accurately represent seasonal cycle of vegetation in TX

Improving Vegetation Phenology

Correlation with MODIS observation

 LAI from NLDAS shows better correlation with MODIS satellite data over most location

Data and Methodology Soil Moisture Index (SSI)

Monthly data for each product was used to calculate the SSI as drought index as below: $\overline{SM} = \overline{SM}$

$$SSI = \frac{SM - SM}{\sigma_{SM}}$$

SM : Soil moiture

 \overline{SM} = Monthly long term average of SM

 $\sigma_{SM} = Monthly long term standard deviation of SM$

Drought categories from SSI (Mckee 1993)	
SSI	Drought category
0 to -0.99	Mild drought
-1.5 to -0.99	Moderate drought
-1.5 to -1.99	Severe drought
-2.00 or less	Extreme drought

Results and Discussion

Results and Discussion

Results and Discussion

Summary, Findings, and Next Steps

- UTA-LIS modeling system for Texas
 - Creates real-time soil moisture using real-time NWM forcing
 - Produces a new soil moisture climatology using
 - Improved precipitation
 - Enhanced vegetation phenology
- Comparisons of soil moisture anomalies for drought of 2022
 - NLDAS-2, NWM and UTA-LIS
 - Using climatologies based on respective analysis

Summary, Findings, and Next Steps

- Rootzone soil moisture anomalies of July 2022
 - by wetness
 - NLDAS-2 comparable to UTA-LIS < NWM</p>
 - Persistently positive bias in NWM simulations
 - Artifacts in northwest TX

Summary, Findings, and Next Steps

- Will investigate the causes of differences in soil moisture norms
 - Impacts of precipitation improvements offset by enhanced ET?
 - Issues in prescribed LAI for the northwest/panhandle?
- Will leverage additional sensor product to determine the physical realisms of dry spots in NLDAS-2 surface soil moisture for July 2022

THANK YOU

For more info, contact farhad.hassani@mavs.uta.edu

Additional information

Analysis of Record for Calibration (AORC)

- 1979- 2003: NLDAS-2 daily precipitation (re-disaggregated)
 - Inherits bias in NLDAS-2 product
- 2003- present: NWS Stage-IV (radar-gauge product)

Additional information

