Noah-MP parameter optimization at southern great plains using Bayesian Optimization

Qingyu Wang¹, Sean Crowell¹, Petra Klein¹, Xiao-Ming Hu^{1,2} ¹School of Meteorology, University of Oklahoma, Norman, OK ²Center for Analysis and Prediction of Storms (CAPS), Norman, OK

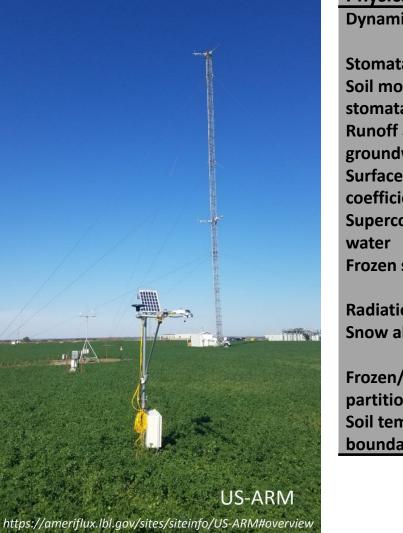
Land Surface Model (LSM) Biases

LSM biases are mainly contributed from 3 primary components:

An imperfect model structure;

Inappropriate model parameter values;

Incorrect model inputs (including meteorological forcing data and initial surface conditions)


LSM parameters: the mean physical quantities for a model grid based on observations or estimated using data from other sources, such as satellite imagery or databases

Motivation

To optimize surface energy fluxes (e.g., sensible heat flux) and near-surface atmospheric state variables (e.g., 2-m air temperature) in WRF/Noah-MP by optimizing sensitive parameters.

To be a physically more reasonable value at this specific location and time

Observations and Model Configuration

Dhysical process	Ontion used	I
Physical process	Option used	
Dynamic Vegetation	Off – LAI from the Table; Constant vegetated	Model: A single-column WRF with
	area fraction	U
Stomatal Resistance	Ball-Berry (<u>Ball et al., 1987</u>)	Noah-MP LSM
Soil moisture factor for	Noah type (<u>Chen et al., 1996</u>)	Meteorological forcing data: ERA5
stomatal resistance		reanalysis data (6 hourly)
Runoff and	Infiltration-excess surface runoff and free	
groundwater	drainage (<u>Schaake et al., 1996</u>)	Forcing layers: 25 (ground up to 50
Surface layer drag	Monin-Obukhov	hPa)
coefficient		Soil moisture and temperature:
Supercooled liquid	Standard freezing point depression (<u>Niu &</u>	AmeriFlux observations
water	<u>Yang, 2006</u>)	
Frozen soil permeability	Uses total soil moisture to compute hydraulic	
	properties (<u>Niu & Yang, 2006</u>)	
Radiation transfer	Two-stream with canopy gap equal to one	WRF parameterization schemes:
Snow albedo	CLASS (only considers overall snow age)	
	(Verseghy, 1991)	Longwave radiation: RRTM
Frozen/liquid	Based on Jordan (1991)	Shortwave radiation: Dudhia
partitioning		Surface layer physics: Revised MM5
Soil temperature lower	Zero heat flux	Monin-Obukhov scheme
boundary condition		
		PBL: YSU

Noah-MP options chosen

Parameters to test

<u>A sensitivity analysis (finite difference method)</u> is performed on 39 parameters in Noah-MP.

6 most sensitive soil parameters are selected for optimization

Parameter	Description	Default Value	Units	Involved physical process
BEXP	Pore size distribution index		_	Soil hydraulic conductivity, Plant photosynthesis, Soil water evaporation
DKSAT	Saturated soil hydraulic conductivity		m s⁻¹	Soil hydraulic conductivity
DWSAT	Saturated soil hydraulic diffusivity		m ² s ⁻¹	soil water diffusivity
SMCMAX	Porosity		m ³ m ⁻³	Soil water evaporation, Soil thermal diffusivity and conductivity
SMCREF	Volumetric soil water content at field capacity	0.387	m ³ m ⁻³	Plant photosynthesis related to soil moisture
SMCWLT	Wilting point soil moisture		$m^3 m^{-3}$	Plant photosynthesis, Soil water evaporation

Bayesian Optimization

Bayesian optimization is a powerful framework for globally optimizing expensive-to-evaluate functions

$$x_{opt} = \underset{x \in X}{\operatorname{argmin}} f(x)$$

Objectives can be:

< 20 dimensions;

Continuous;

Observed without gradients;

"Black Boxes"

Typical application:

hyperparameter optimization

$$\frac{f(x) \text{ in this problem}}{f(x)} = \sum_{i=1}^{5} \frac{1}{2\sigma_i^2} \sum_{t} |obs(x,t) - sim(x,t)|^2$$

Optimize 10 continuous sunny days obs(x,t) - sim(x,t): mismatches of H, LE, T2, Q2, and WS -> Find the parameters making the mismatch smallest.

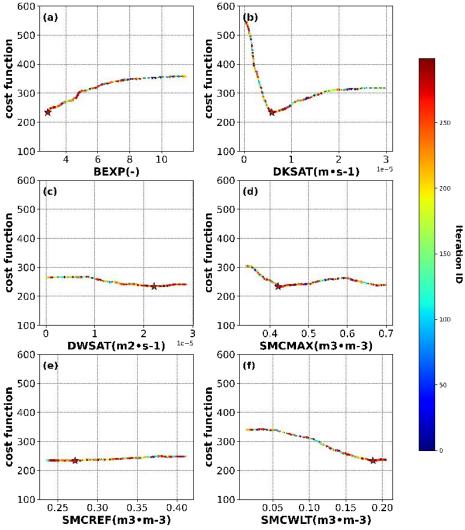
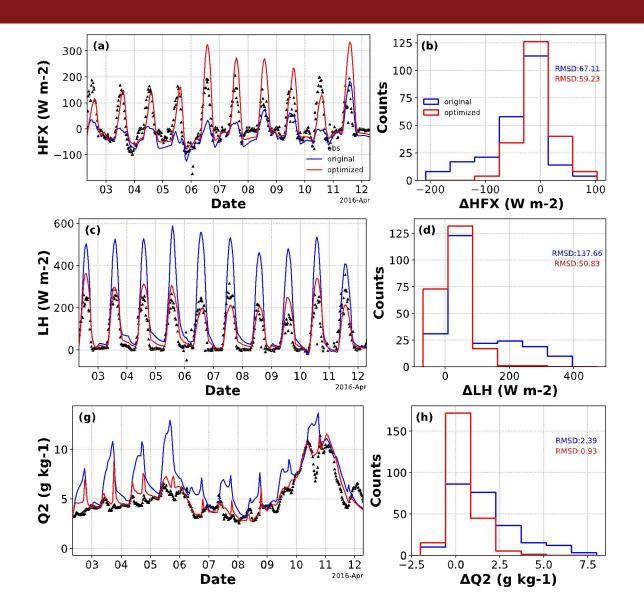
Optimization results

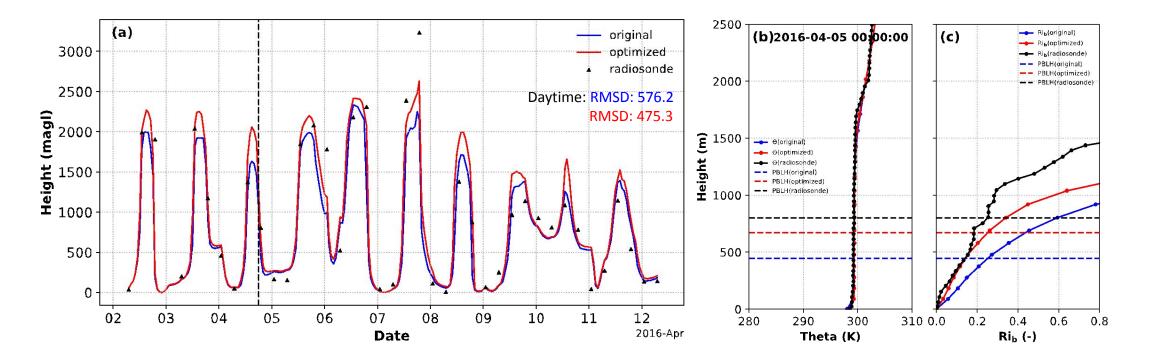
Optimized parameters: global optimization of the six parameters with the smallest cost function value

60 random points to evaluate before actual Bayesian exploration starts300 iterations after initial exploration.

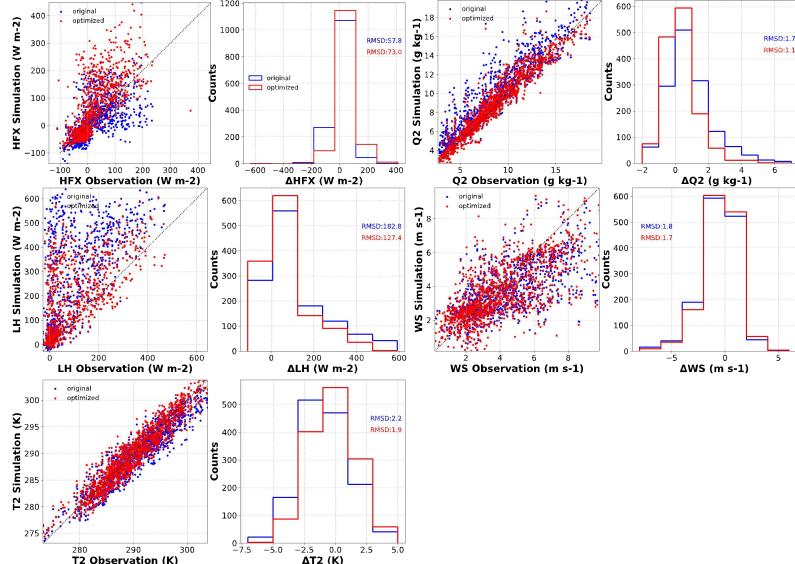
Parameter	Description	Default Value	<u>Optimized</u> <u>Value</u>	Units
BEXP	Pore size distribution index		2.87	-
DKSAT	Saturated soil hydraulic conductivity			m s ⁻¹
DWSAT	Saturated soil hydraulic diffusivity			$m^2 s^{-1}$
SMCMAX	Porosity		0.42	$m^{3}m^{-3}$
SMCREF	Volumetric soil water content at field capacity	0.387	0.272	$m^{3}m^{-3}$
SMCWLT	Wilting point soil moisture		0.187	$m^{3}m^{-3}$

LAI in MPTABLE.TBL is adjusted to MODIS LAI


Figure: parameter values and their corresponding cost function values. The color stands for the iteration ID (300 iterations in total after burning period)

Optimization results


- In general, the global optimization of the six parameters leads to a stronger soil water infiltration
- A better simulation in HFX, LH, T2, Q2, WS

Optimization results – PBLH

With Bulk-Richardson Number method (threshold 0.25), the global optimization of the six parameters leads to a better estimation of <u>PBLH in the daytime</u>

Optimization Results – spring growing season

Optimized parameters also improve the estimations in the alfalfa growing season (April & May in 2016 at ARM), especially LH, Q2

Summary

- Six soil parameters are optimized using Bayesian Optimization in a single-column WRF-Noah-MP. The optimized parameters help improve the 10-day simulation of H, LE, T2, Q2, and WS
- The optimization also helps improve the simulations of LH, T2, Q2, and daytime PBLH in the whole alfalfa growing season from April to May in 2016 at ARM

