Dynamic Scale Awareness Switching Convection On When Assumptions Are Valid Ahmed Tawfik (abtawfik@ucar.edu), NCAR CGD Terrestrial Science Section

Convective Sub-grid Trigger

What is the Problem?

For parameterized convection to be valid it must obey the asymptotic assumption **Asymptotic assumption** = convective fraction must be smaller than the grid-cell

 $M = \rho^* \sigma^* w \qquad \longrightarrow \quad \sigma << 1$

Explicit Sub-grid Convective Initiation

Calculate the convective threshold (θ_{BM}) in CAM

2. Subtract θ_{2m} from θ_{BM} for each sub-grid land tile in CLM

Building a New Convective Threshold

Step 1:

 Increase the near-surface temperature to create a new potential mixed layer (PML)

Step 2:

 Mix the water vapor profile from the surface to the PML

Step 3:

- Keep increasing near-surface temperature until saturation occurs

 θ_{BM} = the potential temperature required to achieve convective initiation

> Convection is triggered when $\theta_{2m} \geq \theta_{BM}$

3. Pass the **o** back to CAM to determine triggering

CAM v5.3 and CLM v4.0 using a spectral element dynamical core (CAM-SE) Resolution of 1° x 1° in AMIP configuration; each simulation is at least 10-years long Only *July* results are shown

How often is the convective parameterization active?

How does precipitation amount and intensity change?

Control		
6/25 -		Resolved
6/24	•	Control has littl
6/22		nrecin
6/21 -		precip
6/20	•	$\sigma_{0.75}$ shows mu
6/19 -		
6/18		precipitation an
6/17		nrongagtion
6/16 105W 100W 95W		propagation
6/26		Deveneteria
6/25 -		Parameteriz
6/24 -		
6/23 -	•	$\sigma_{0.75}$ shows les
6/22 -		procip and was
6/21 -		precip and wea
6/20 -		phase locking
6/19		p
6/17 —		

ol has little resolved hows much greater itation and gation

Parameterized

hows less ZM and weaker diurnal locking

0.5 1 1.5 2 2.5 3 5 8 10 15 mm day-1

Simulations and Findings

The % of hours where convection is \leftarrow active is reduced by > 40% when σ is less than 0.75

- Better represents rain-free hours when applying appropriate σ
- Note that the large-scale precip is rain-free < 5% of hours

Improvements over India And Arabia; Degraded over tropical Pacific

Applying appropriate **o** gives more intense precipitation and captures observations better

-200 -150 -100 -50 0 50 100 150 200 Model is wetter

Resolved versus parameterized: Plains

Scale awareness for regional meshes

Courtesy of Colin Zarzycki

