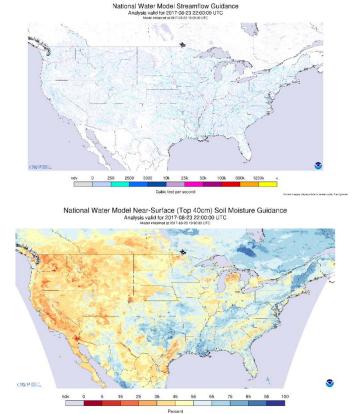


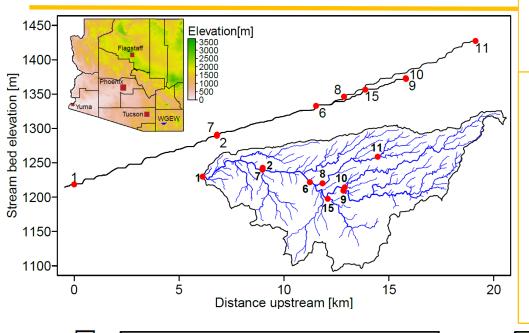
Demonstrating the Value of Adding Suction Losses for Channel Infiltration in WRF-Hydro Hydrological Model and Its Application in Semiarid Region

Yuan-Heng Wang¹, Hoshin V. Gupta¹, Tim M. Lahmers¹, Chris L. Castro¹, Carl L. Unkrich², David C. Goodrich², Pieter Hazenberg¹
2018.12.13

¹Department of Hydrology Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

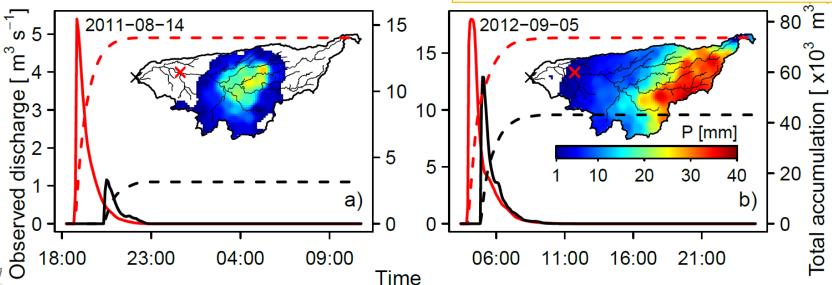
²USDA-ARS, Southwest Watershed Research Center, Tucson, AZ, USA




Introduction

- The WRF-Hydro hydrological model (Gochis et al. 2018) configured as NOAA National Water Model (NWM) is *challenged to reproduce* hydrologic responses (infiltration losses) in southwestern CONUS.
 - NWM Background
 - Need for an NWM: Human Cost of Flood Events
 - \$7.96 Billion Per Year
 - 82 Fatalities Per Year
 - Hydrologic model simulation for the entire Contiguous US
 - Analysis: Hourly streamflow based on observed precipitation
 - Forecasts: Numerical Weather Prediction models used as forcing.

NWM Data Samples



Impact of infiltration at catchment scale

USDA-ARS Walnut Gulch Experiment Watershed

- Observational runoff data in Walnut Gulch Experimental Watershed (WGEW) shows the transmission losses in channel.
- Channel infiltration is identified to be a major physical process that controls the water balance in semiarid regions.

KINEROS2: Mathematical Formulation

KINEROS2: A KINEMATIC RUNOFF and EROSION MODEL (USDA-ARS)

Surface is assumed as ponded at initial condition (t = 0)

$$f_c = K_S \left[1 + \frac{\alpha}{\exp\left[\frac{I'\alpha}{\Delta\theta G}\right] - 1} \right]$$
 f_c : Channel Infiltrability K_S : Saturated Hydraulic Conductivity

Gravity Suction Effect Effect

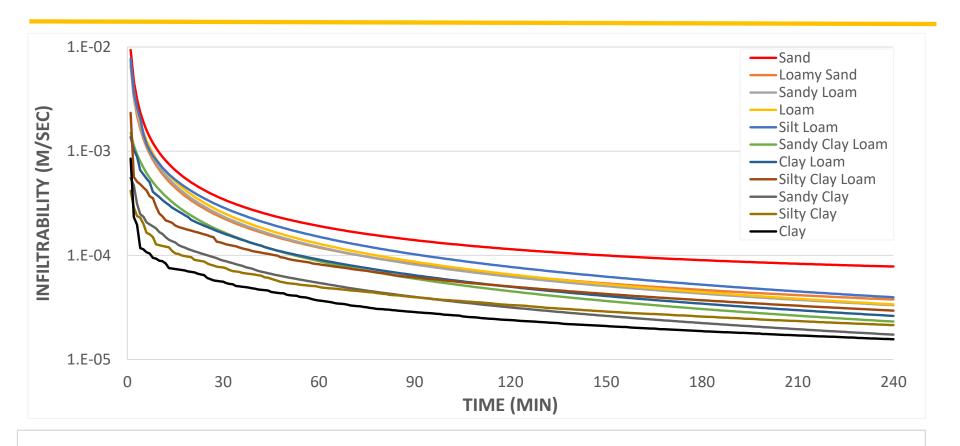
G: Capillary Drive

I'(t): Cumulative Infiltration Depth θ_s : Saturated Soil Water Content

 θ_i : Initial Soil Water Content

 α : Soil Type Parameter (range from 0 to 1)

$$G = \frac{1}{K_S} \int_{-\infty}^{0} K(\varphi) d\varphi$$


Note:

$$I = \frac{G\Delta\theta}{\alpha} \ln \left[\frac{f_c - K_S + \alpha K_S}{f_c - K_S} \right] + K_i t \to I'(t) = \frac{G\Delta\theta}{\alpha} \ln \left[\frac{f_c - K_S + \alpha K_S}{f_c - K_S} \right]$$

 $\alpha = 0 \rightarrow$ Green-Ampt; $\alpha = 1 \rightarrow$ Smith-Parlange

KINEROS2 recommends α =0.80

Time-Variant Channel Infiltrability

Time-Variant Infiltrability shows:

- ✓ The suction affects most at the *first 30 min*.
- ✓ Overall effect extends to around 120 min (2hr).
- ✓ After around 180 min (3hr), Infiltrability approaches to saturated hydraulic conductivity

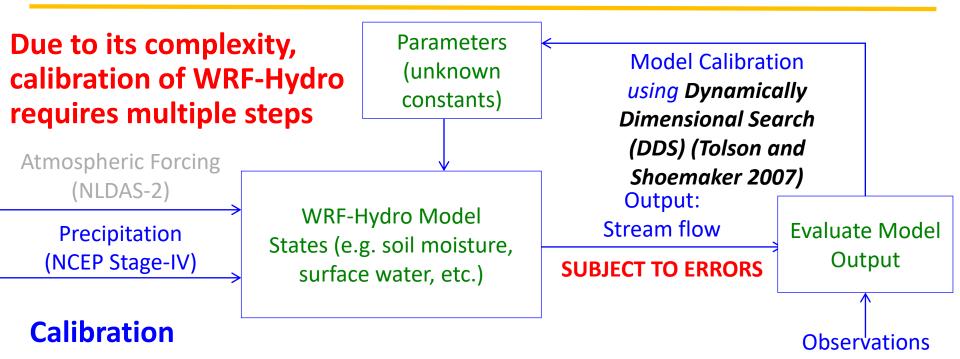
Model Re-initialization

- KINEROS2 is an event oriented, physically based model, so it needs to be re-initialized.
- Three Parameter Infiltration Equation:

$$f_c = K_S \left[1 + \frac{\alpha}{\exp\left[\frac{I'\alpha}{\Delta\theta G}\right] - 1} \right] \qquad I'(t) = \frac{G\Delta\theta}{\alpha} \ln \left[\frac{f_c - K_S + \alpha K_S}{f_c - K_S} \right]$$

Current Research:

✓ I'(t) exponetially returns to "zero" within "2" days (2880 min)

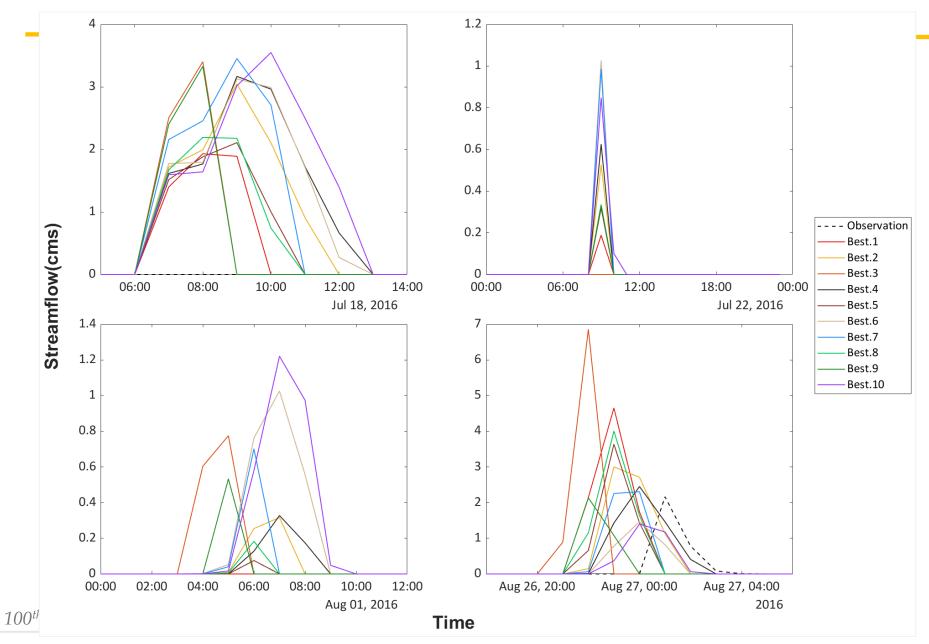

$$I'(t) = ae^{b(t-t_0)}; \ a = I_{total}; b = ln \frac{\left[\frac{I_{5min}}{I_{total}}\right]}{2880 \ (min)}$$

 I_{total} : Total cumulative infiltration depth during one single flow event

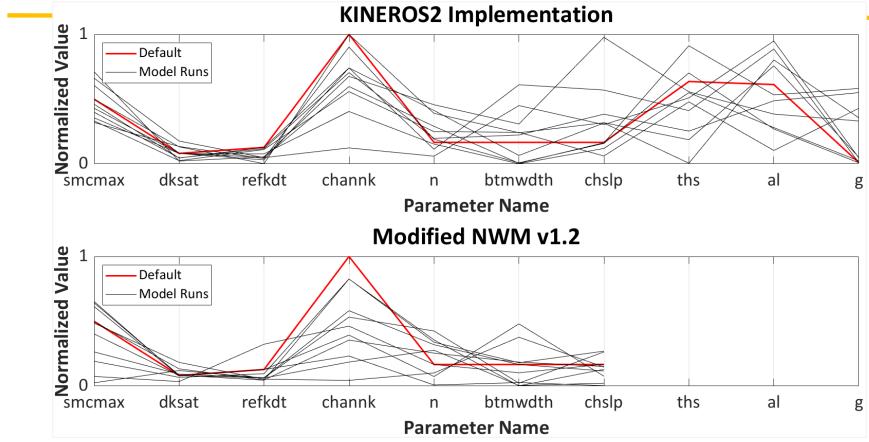
 I_{5min} : The first five minute cumulative infiltration depth

There are multiple other ways to solve this problem.

Event-Based Calibration in WGEW


- Choose Walnut Gulch Experiment Watershed as illustrative example
- Spin up Period ranges from Jun 1st 2014 to May 31st 2016
- Calibration Period ranges from Jun 1st 2016 to Aug 31st 2016
- Calibration based on basin outlet using Kling Gupta Efficiency (KGE) objective function and total of 250 DDS steps
- Repeat the same procedure for 10 times

Name	Description	Units		
Soil Parameters				
BEXP	Pore size distribution index	dimensionless		
SMCMAX	Saturation soil moisture content (i.e., porosity)	volumetric fraction		
DKSAT	Saturated hydraulic conductivity	m/s		
Runoff Parameters				
REFKDT	Surface runoff parameter	unitless		
SLOPE	Linear scaling of "openness" of bottom drainage boundary	0-1		
RETDEPRTFAC	Multiplier on retention depth limit	unit less		
LKSATFAC	Multiplier on lateral hydraulic conductivity	unitless		
Groundwater Parameters				
Zmax	Maximum groundwater bucket depth	mm		
Expon	Exponent controlling rate of bucket drainage as a function of depth	dimensionless		
Vegetation Parameters				
CWPVT	Canopy wind parameter for canopy wind profile formulation	1/m		
VCMX25	Maximum carboxylation at 25C	umol/m²/s		
MP	Slope of Ball-Berry conductance relationship	unitless		
Snow Parameters				
MFSNO	Melt factor for snow depletion curve	dimensionless		
Channel Parameters				
ths	Saturated soil water content	volumetric fraction		
thin	Initial soil water content	volumetric fraction		
al	Pore size distribution index	unitless		
g	Mean capillary drive	m		

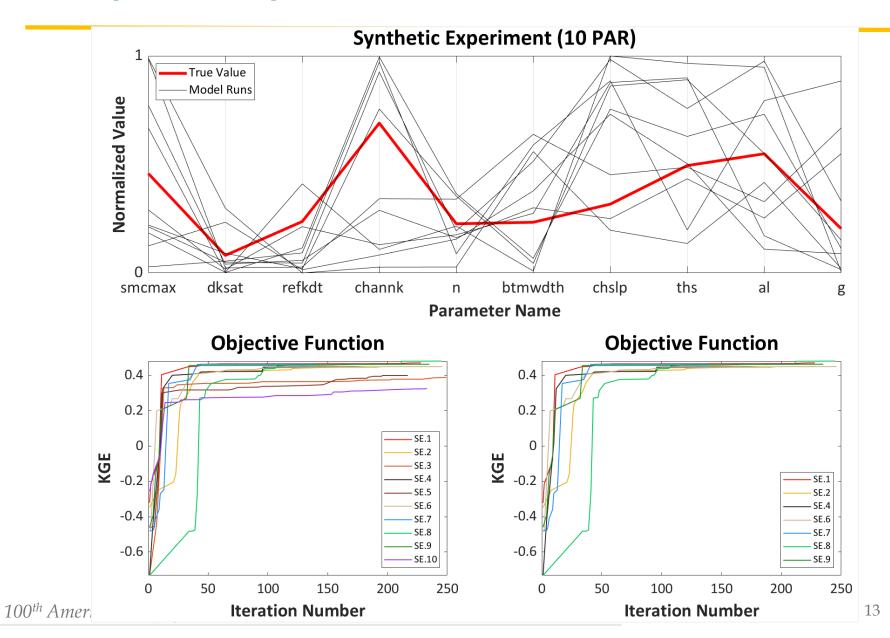

Selected Parameters (10 PAR)

Name	Description	Units	
Soil Parameters			
SMCMAX	Saturated soil moisture content (i.e., porosity)	volumetric fraction	
DKSAT	Saturated hydraulic conductivity	m/s	
Runoff Parameters			
REFKDT	Surface runoff parameter (partitioning of total runoff into surface and subsurface runoff)	Unitless	
Channel Parameters			
ChannK	Channel bed conductivity (for channel infiltration function)	m/s	
btmwdth	Bottom width of Channel	m	
ChSlp	Channel side slope	Unitless	
n	Manning's N	s/m ^{1/3}	
ths	Saturated soil water content	volumetric fraction	
al	Pore size distribution index	unitless	
g	Mean capillary drive	m	

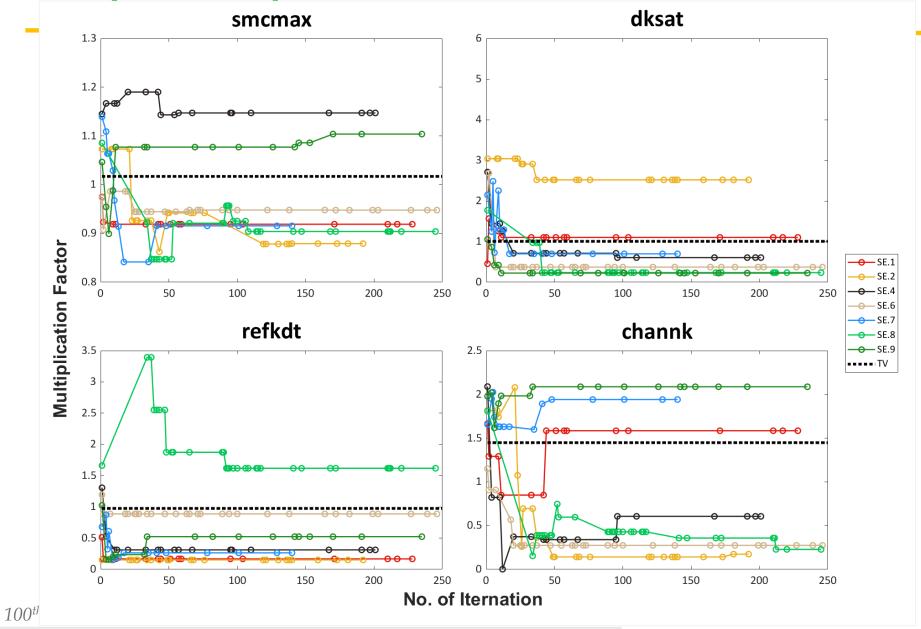
Calibration on the Real Data

Uncertainty in Best Parameter

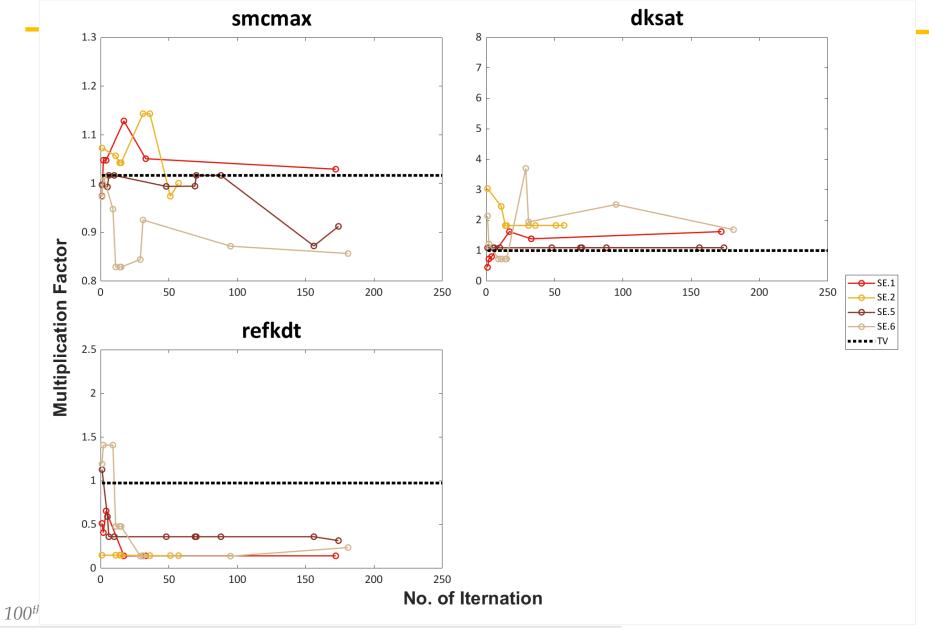
- ✓ Both NWM versions suggest that only two LSM parameters "dksat" and "refkdt" are sensitive.
- ✓ Capillary Drive "g" seems to be the most sensitive parameter among other three new added channel parameters


Synthetic Experiment (SE)

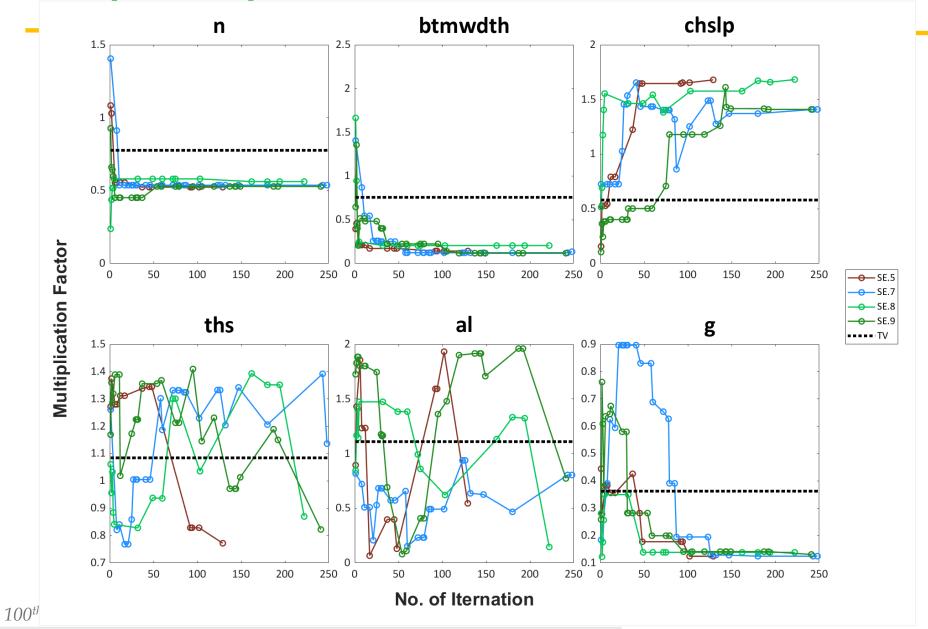
- Remove the model/data error
 - Use the "median" of 10 best parameter value as "true value"
- Simulation:
 - Fix nine parameters at their "true value" and perturbed one parameter at a time
 - Examine the effects that each parameter plays on the hydrograph


Calibration:

- Use the same "first searching direction" of previous 10 DDS runs
- Calibrate 10 parameters (10 runs) using 250 DDS iterations
- Calibrate 9 parameters (10 runs) using 250 DDS iterations (Remove "Channk")
- Calibrate 6 parameters (10 runs) using 250 DDS iterations (Remove "Channk" and three parameters in Noah-MP LSM)


SE (10 PAR)

SE (10 PAR)


SE (9 PAR)-Fixed ChannK

SE (9 PAR)-Fixed ChannK

SE (6 PAR)-Fixed ChannK & LSM PAR

Conclusions & Future Research

- Our implementation of the updated infiltration scheme works for semi-arid region
- It is not ideal to calibrate all 10 parameter at one time
- In the synthetic experiment the calibrated parameters did not converge to the "true value" for any demonstrated cases
- The reason may be:
 - The data contains insufficient information
 - The interdependence between different parameters leads to compensation while searching for the optimum
 - The selected objective function (KGE) is not sensitive to the channel infiltrability at the beginning of the flow event

