WRF-Hydro Forcing Engine Overview

L. Karsten, D. Gochis, J. Grimm, Y. Zhang, R. Cabell National Center for Atmospheric Research

G. Fall, D. Kitzmiller Office of Water Prediction

WRF-Hydro Workflow

Input Forcing Data Requirements

Variable name	Description	Units	
SWDOWN	Incoming shortwave radiation	W/m ²	
LWDOWN	Incoming longwave radiation	W/m ²	
Q2D	Specific humidity	kg/kg	
T2D	Air temperature	K	
PSFC	Surface pressure	Pa	
U2D	Near surface wind in the u-component	m/s	
V2D	Near surface wind in the v-component	m/s	
RAINRATE	Precipitation rate	mm/s or kg/m ² /s	

ALL FORCING DATA IS MAPPED TO SAME GRID (based on the 'geogrid') SPECIFIED PRECIPITATION MAY HAVE HIGHER TIME RESOLUTION (e.g. 5min)

NWM Forcing Data Engine Construction

Create national 1km gridded fields of:

Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate

2. Downscaling of:

- Temperature (NARR distributed climatological lapse rate)
- Mixing ratio (conserve RH)
- Surface pressure
- Incoming shortwave radiation (terrain slope and aspect)

NWM Operational Cycles

	Cycling	Forecast	Met Forcing	Outputs
ANALYSIS	Hourly	-3 - 0 hrs	MRMS QPE	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
SHORT-RANGE	Hourly	1 – 18 hrs	Downscaled HRRR/RAP Blend	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
NEDIUM-RANCE	4x Daily	to 10 days	Downscaled GFS	1-km spatial fluxes (water & energy); 250-m routed fluxes (water); NHDPlus channel routing
LONG-RANGE	Daily x 16 ensembles	to 30 days	Downscaled & NLDAS2 Bias- Corrected CFS	1-km spatial fluxes (water & energy); NHDPlus channel routing

NWM Forcing Data Engine Construction

- Medium Range Configuration
 - Downscaled GFS (incoming shortwave radiation Sept. 11, 2015 21Z)

NWM Meteorological Forcing Engine (MFE)

1. Create national 1km gridded fields of:

- Temperature, mixing ratio, surface pressure, u-, v-windspeed, longwave and shortwave radiation, precipitation rate
- 2. Terrain Downscaling of:
 - Temperature (NARR distributed climatological lapse rate)
 - Mixing ratio (conserve RH)
 - Surface pressure
 - Incoming shortwave radiation (terrain slope and aspect)
 - Rain-snow portioning (in development)
 - Wind (in development)
- 3. Statistical Bias Correction
- 4. Open source ncl/bash scripted workflow utilizing ESMF regridding tools
- 5. Multi-thread job, scales almost linearly because there is no memory sharing across processors (1-d calculations)

Seasonally-varying MRMS RQI

HRRR-RAP 2m Air Temperature

Blended MRMS-HRRR Precipitation

Developed by Linlin Pan and Wei Yu with contributions from D. Kitzmiller, G. Fall, A. RafieeiNasab

Forcing Engine Workflow

Forcing Engine Workflow

Questions?