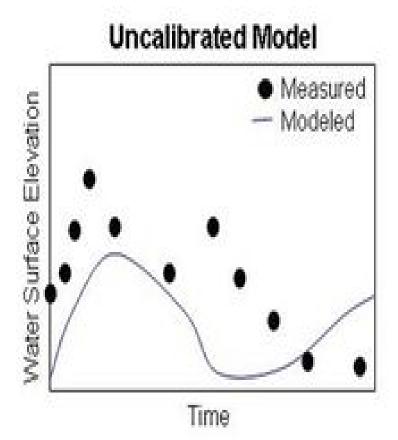
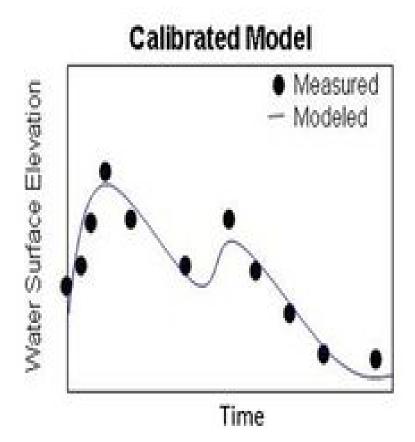
# Overview of National Water Model Calibration General Strategy & Optimization

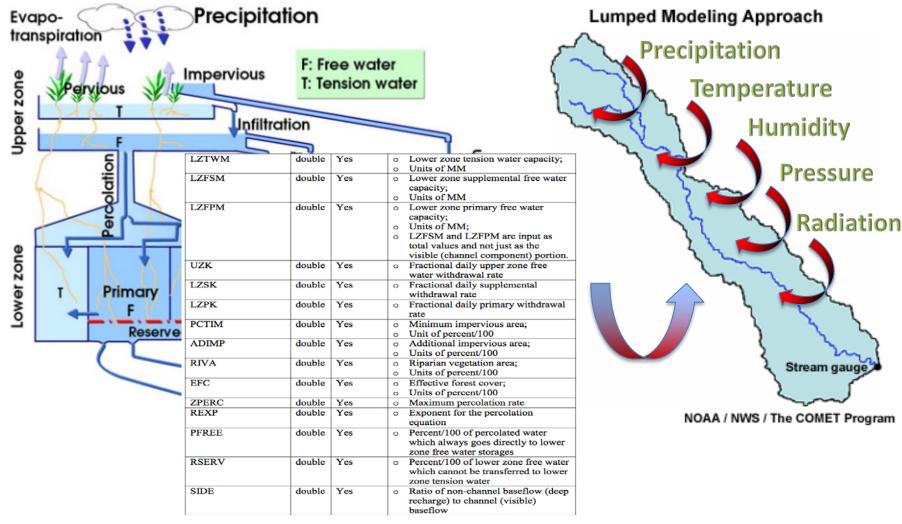
D. Gochis, D. Yates, K. Sampson, A. Dugger, J. McCreight, M. Barlage, A. RafieeiNasab, L. Karsten, L. Read, Y. Zhang, M. McAllister, R. Cabell, K. FitzGerald


**National Center for Atmospheric Research** 


3:45 – 4:45pm, Thursday Oct 17, 2019

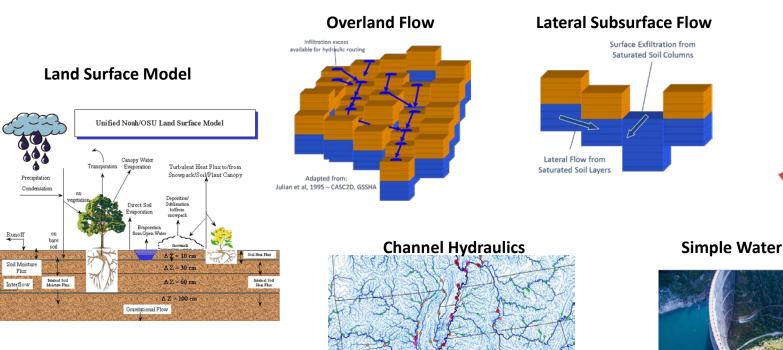
### **Table of Content**

- General Strategy
- Calibration basin selection
- Calibration
  - DDS
  - Specifics of NWM Calibration
  - PyWrfHydroCalib
- Regionalization
- Sensitivity Analysis

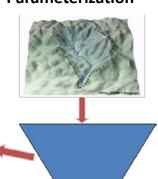

# **General Strategy**





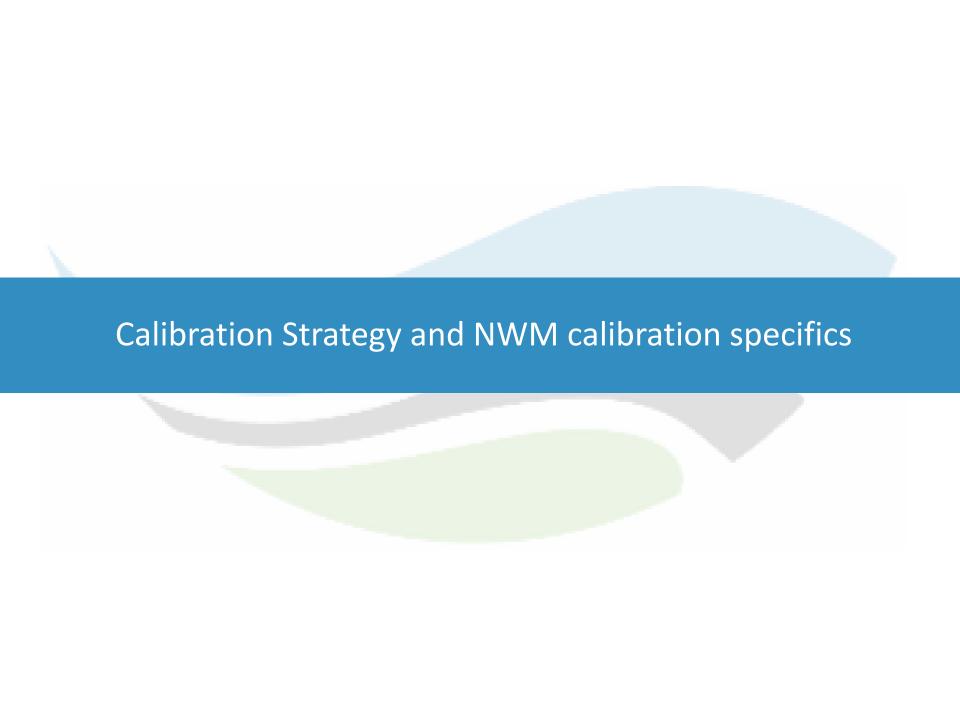

Simple enough...... Right?.....

# **General Strategy**




Traditional NWS lumped hydrologic modeling....

# **WRF-Hydro Physics Components**



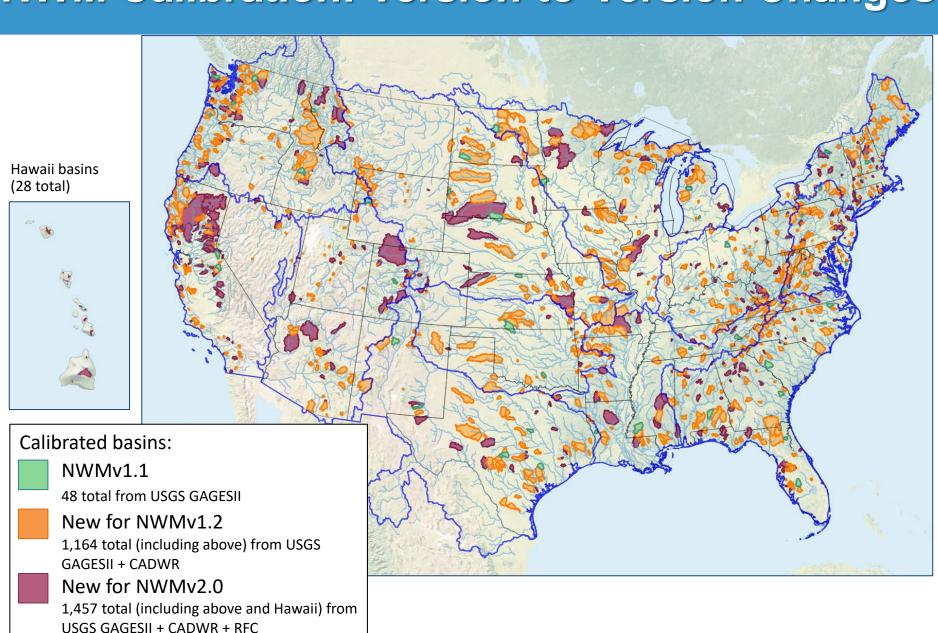

#### **Simplified Baseflow Parameterization**



**Simple Water Management** 






### Calibration Period and Forcing

- Spin up with the default parameters: (2007-10 to 2016-10)
- Iteration 1 to n (max number of iterations)
  - Spin up: 1 year (2007-10 to 2008-10)
  - Calibration: 5 years (2008-10 to 2013-10)
- Final Parameters
  - Validation: 3 years (2013-10 to 2016-10)
- What to use as forcing data?
  - Ideally, it is preferred to calibrated using the same forcing as what is used in for the final application.
  - Downscaled NLDAS-2 in NWMv1.1 and NWMv1.2.
  - A mountain-mapper adjustment to the precipitation data of downscaled NLDAS-2 in NWMv2.0.
  - Analysis of Record for Calibration (AORC) introduced by Kitzmiller et al. 2019 in NWMv2.1.

### **Basin Selection Criteria For Calibration**

- Size of the basins: 10,000 km<sup>2</sup> as an upper bound for the basin size
- Completeness of the streamflow observation: 50% completeness in calibration period in order to include some of the seasonal gages also. When criteria was not met, we checked the daily time step.
- **Disturbance index:** Considering 7 variables, including major density, reservoir storage, fresh water withdrawal, road density, landscape fragmentation, percentage of streamline coded as canals/ditches/pipelines, and distance to the nearest major National Pollutant Discharge Elimination System site.
- **Basins containing lakes:** Even though the calibration basins were investigated to have minimal regulation through disturbance index, we further investigated the calibration basins containing water bodies.
  - Number of lakes in a basin
  - Distance of the lake outlet to the basin outlet
  - Percentage of the total lake drainage area to the basin drainage area
  - Percentage of the regulated flow (outflow from lakes in the basins) to basin outflow
  - Ratio of the lake storage volume to the basin mean annual flow volume
- Consider having enough basins available for regionalization

### NWM Calibration: Version-to-Version Changes



### Calibration Methodology

Dynamically Dimensioned Search (DDS) algorithm

- search strategy in model parameter space is scaled to the maximum number of iterations specified by the user.
- In initial iteration the algorithm search globally and as the procedure approached the maximum user-defined number of iterations, the search transition from a global to a local search.

This transition from a global to local search is achieved by dynamically and probabilistically reducing the search dimension which is the subset of the calibration parameters that will be updated in a given iteration.

#### Dynamically dimensioned search algorithm for computationally efficient watershed model calibration

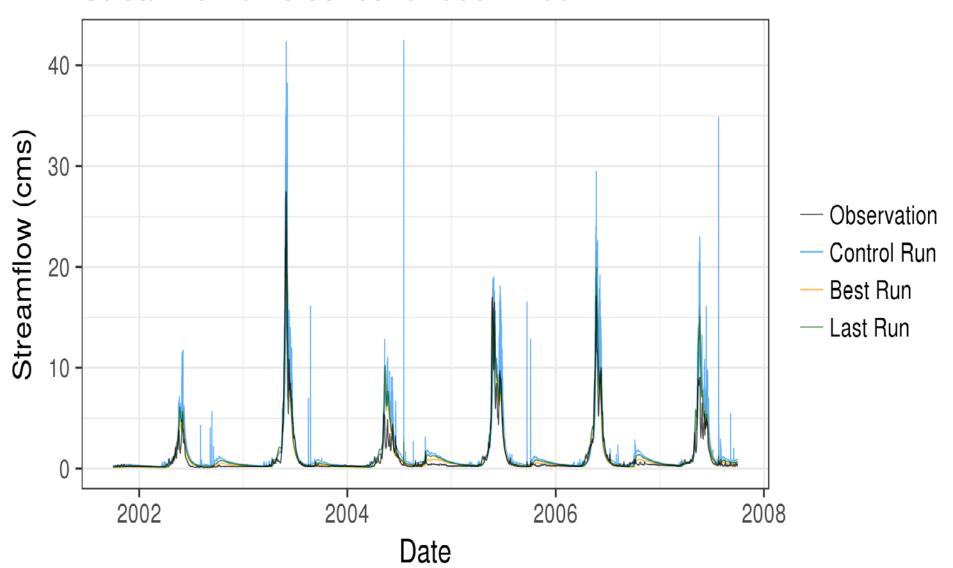
Bryan A. Tolson ⋈, Christine A. Shoemaker

First published: 17 January 2007 | https://doi.org/10.1029/2005WR004723 | Cited by: 183



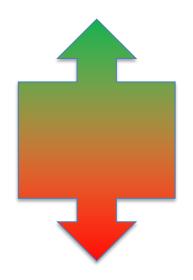


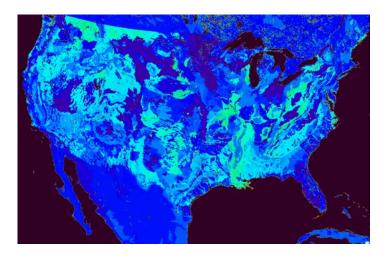





# **Calibration: Metrics**

| Metric                                   | Equation                                                                                                                                                                                                                                                                                                                                                                                 | Optimal<br>Value | Reference                    | Purpose                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Objective Function                       | 1-(NSE + NSELog)/2                                                                                                                                                                                                                                                                                                                                                                       | 0                |                              | Weighted NSE transformed so that minimal value is best (requirement of method obj fn)                                                                                                                                                                                                                                                                                                                                                            |  |
| Nash-Sutcliffe Efficiency<br>(NSE)       | NSE = 1 - ( sum( (obs - sim)^2 ) / sum( (obs - mean(obs))^2 )                                                                                                                                                                                                                                                                                                                            | 1                | See:Nash &<br>Stucliffe 1970 | Single metric combining timing and magnitude errors.                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Log-transformed NSE (NSELog)             | NSELog =1 - ( sum( (log10(obs) - log10(sim))^2 ) / sum( (log10(obs) - mean(log10(obs)))^2 )                                                                                                                                                                                                                                                                                              | 1                |                              | Same as above but applied to log-transformed flowrates.                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Weighted NSE (NSEWt)                     | (NSE + NSELog)/2                                                                                                                                                                                                                                                                                                                                                                         | 1                |                              | Capture flow timing and magnitude errors jointly via the NSE metric and somewhat reduce the peak flow emphasis of NSE by including the log-transformed metric.                                                                                                                                                                                                                                                                                   |  |
| Pearson correlation (Cor)                |                                                                                                                                                                                                                                                                                                                                                                                          | 1                |                              | Flow timing                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Root mean squared error (RMSE)           | RMSE = sqrt(sum((sim - obs)^2)/n))                                                                                                                                                                                                                                                                                                                                                       | 0                |                              | Flow magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Percent bias (Bias)                      | Bias = sum(sim - obs) / sum(obs)                                                                                                                                                                                                                                                                                                                                                         | 0                |                              | Flow magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Kling-Gupta Efficiency<br>(KGE)          | KGE = sqrt( (s.r*(1-r))^2 + (s.alpha*(1-alpha))^2 + (s.beta*(1-beta))^2 ); r = cor(sim, obs, use=use); alpha = sd(sim, na.rm=na.rm) / sd(obs, na.rm=na.rm); beta = mean(sim, na.rm=na.rm) / mean(obs, na.rm=na.rm)                                                                                                                                                                       | 1                | See:Gupta et al<br>2009      | Single metric combining timing and magnitude errors.                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Multi-Scale Objective<br>Function (MSOF) | MSOF=sqrt(sum((sd0/sd(k))^2*sum((obs-sim)^2))) where: sd0=standard deviation at native scale (e.g., hourly); sd(k)=standard deviation at the aggregated scale k (e.g., 6 hourly) obs, sim=aggregated observation or simulation at the kth aggregation scale first sum is over the n specified aggregation scales (k=1,n) second sum is over the m ordinates at the kth aggregation scale | 0                | See: Kuzmin et<br>al. 2008   | The MSOF was adopted as an optimization criterion for calibrating the HL-RDHM using the Stepwise Linear Search (SLS) algorithm. The rationale behind MSOF is to simultaneously consider contributions from a wide range of time scales of aggregation during the calibration process (i.e., mimicking manual calibration), and to reduce the likelihood of the search getting stuck in small 'pits', by smoothing the objective function surface |  |


# **Calibration Strategy**


Streamflow time series for 06622700



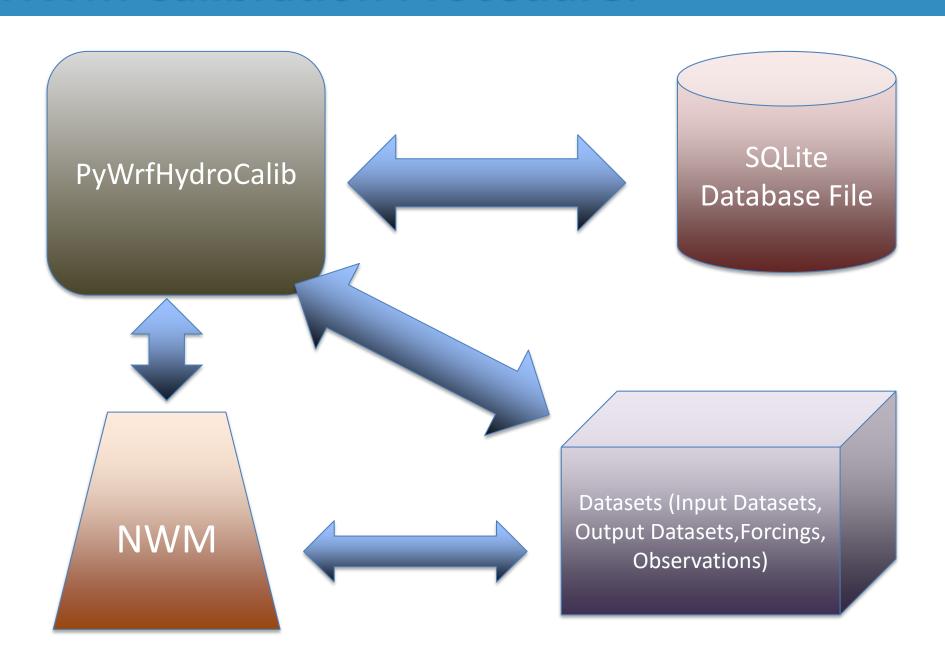
### **Calibration: Parameters**

- Parameter adjustment:
  - Scalar adjustment



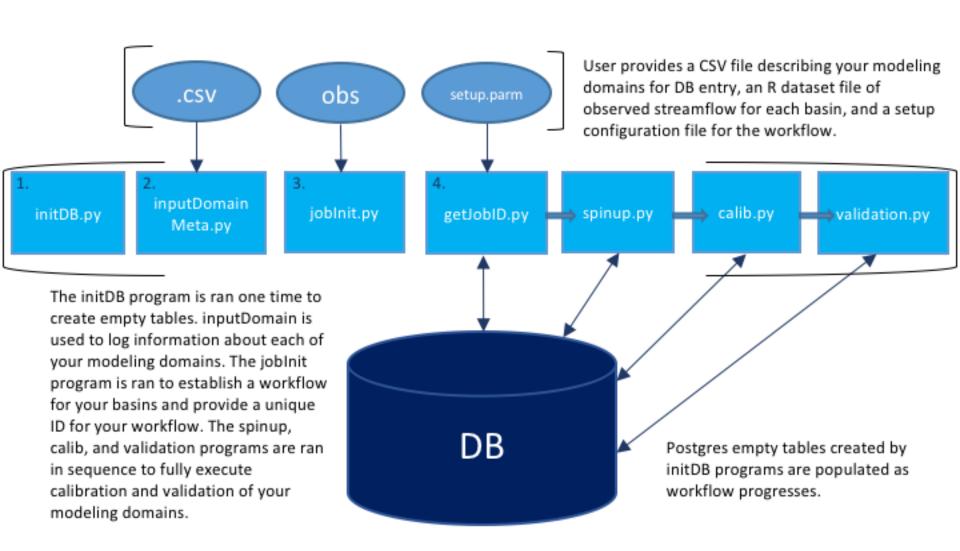


- Replacement
  - Table values
  - Parameters with uniform values across domain


## **Calibration: Parameters**

| Name               | Description                                                                                                                                                                                                                        | Units               |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| SOIL PARAMS        |                                                                                                                                                                                                                                    |                     |
| bexp               | Pore size distribution index                                                                                                                                                                                                       | dimensionless       |
| smcmax             | Saturation soil moisture content (i.e., porosity)                                                                                                                                                                                  | volumetric fraction |
| dksat              | Saturated hydraulic conductivity                                                                                                                                                                                                   | m/s                 |
| rsurfexp           | Exponent in the resistance equation for soil evaporation                                                                                                                                                                           | dimensionless       |
| RUNOFF PARAMS      |                                                                                                                                                                                                                                    |                     |
| refkdt             | Surface runoff parameter; REFKDT is a tuneable parameter that significantly impacts surface infiltration and hence the partitioning of total runoff into surface and subsurface runoff. Increasing REFKDT decreases surface runoff | unitless            |
| slope              | Linear scaling of "openness" of bottom drainage boundary                                                                                                                                                                           | 0-1                 |
| RETDEPRTFAC        | Multiplier on retention depth limit                                                                                                                                                                                                | unitless            |
| LKSATFAC           | Multiplier on lateral hydraulic conductivity (controls anisotropy between vertical and lateral conductivity)                                                                                                                       | unitless            |
| GROUNDWATER PARAMS |                                                                                                                                                                                                                                    |                     |
| Zmax               | Maximum groundwater bucket depth                                                                                                                                                                                                   | mm                  |
| Expon              | Exponent controlling rate of bucket drainage as a function of depth                                                                                                                                                                | dimensionless       |
| VEG PARAMS         |                                                                                                                                                                                                                                    |                     |
| CWPVT              | Canopy wind parameter for canopy wind profile formulation                                                                                                                                                                          | 1/m                 |
| VCMX25             | Maximum carboxylation at 25C                                                                                                                                                                                                       | umol/m2/s           |
| MP                 | Slope of Ball-Berry conductance relationship                                                                                                                                                                                       | unitless            |
| SNOW PARAMS        |                                                                                                                                                                                                                                    |                     |
| MFSNO              | Melt factor for snow depletion curve; larger value yields a smaller snow cover fraction for the same snow height                                                                                                                   | Dimensionless       |
| CHANNEL PARAMETERS |                                                                                                                                                                                                                                    |                     |
| Bw                 | Parameterized width of the bottom of the stream network                                                                                                                                                                            | m                   |
| HLINK              | Initial channel depth                                                                                                                                                                                                              | m                   |
| ChSSIp             | Channel side slope                                                                                                                                                                                                                 | m/m                 |
| MannN              | Manning's roughness coefficient                                                                                                                                                                                                    | Dimension           |

# Calibration Strategy (NWM v1.2)


- Deliverables for >1100 basins demanded a more robust workflow to execute model simulations automatically on NCAR supercomputers.
- Ability to store model analysis statistics and workflow status on a database.
- Ability to restart calibrations when fatal system errors occurred.
- Proper error/message dissemination to the users running calibration.

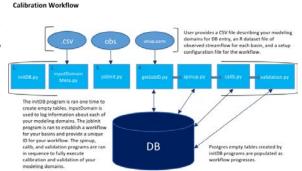
### **NWM Calibration Procedure:**

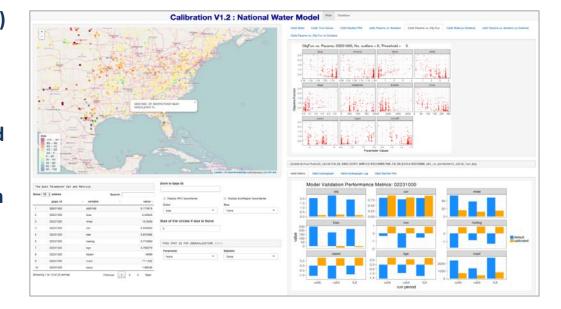


### **NWM Calibration Procedure:**

#### Calibration Workflow




### PyWrfHydroCalib: Python + R package for model calibration


- Domain subsetting tools
- Parameter sensitivity analysis
  - Distributed Evaluation of Local Sensitivity Analysis (DELSA) methodology (Rakovec et al. 2014)

#### Calibration:

- Dynamically Dimension Search (DDS) algorithm (Tolson, B. A., and C. A. Shoemaker: 2007)
- Split sample calibration/validation
- Multiple criteria monitoring (NSE, RMSE, % bias, correlation, KGE, MSOF)
- Automated Rwrfhydro-NWM workflow

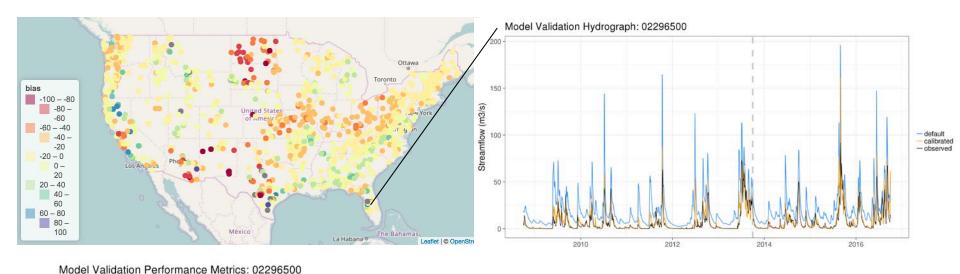
Automated workflow using Python and R interacting with a MySQL database (PyNWMCalib)

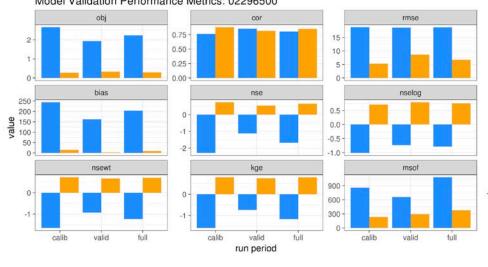




A. Dugger, L. Karsten, A. RafieeiNasab

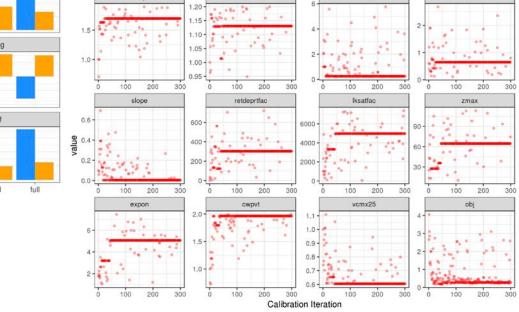
# **Necessary Packages**


#### • R


- ggplot2
- data.table
- gridExtra
- sensitivity (if running sensitivity analysis)
- randtoolbox (if running sensitivity analysis
- boot
- Ncdf4
- Plyr

### Python

- NetCDF4
- Pandas
- Numpy
- psutil


# **Model Calibration**



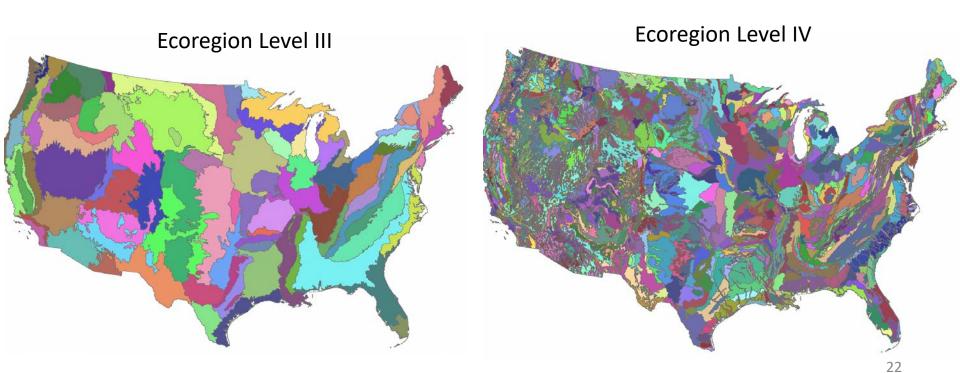


default

calibrated



Parameter vs. iteration: 02296500, No. outliers = 3, Threshold = 5


refkdt

# Calibration Strategy - Future

- Improved retrospective forcing's.
- Multi-variate calibration
  - Snow
  - Soil Moisture
- Additional parameters for calibration

### Regionalization

Ecoregions are based on perceived patterns of a combination of causal and integrative factors including land use, land surface form, potential natural vegetation, and soil (Omernik J.M., 1987) and are mapped into different levels based on the degree of classification details.



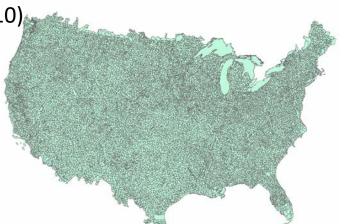
### Hydrologic Landscape Regions (HLR) Clustering

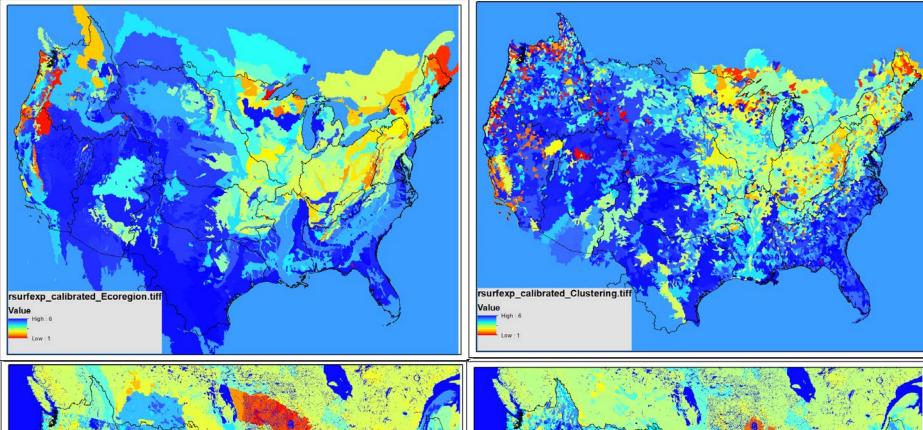
#### Collect/compute HLR parameters

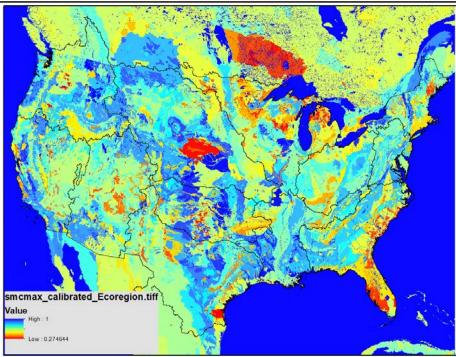
- Climate (P-PET), land surface form (total %flatland, %flatland in upland, %flatland in lowland, relief)
- Soil & geology (% sand, <u>% clay</u>, bedrock permeability), <u>land cover (% forest cover)</u>

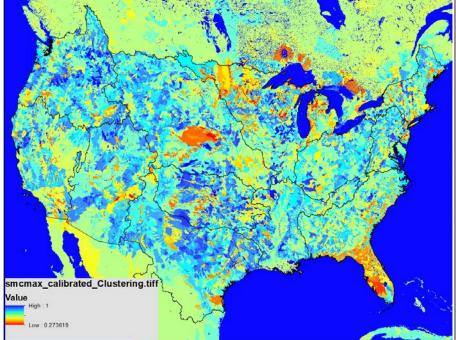
#### Perform principal component analysis (PCA)

- Removes correlation among parameters
- Identify principal components with each explaining at least 5% of the total variance


#### • Perform clustering analysis

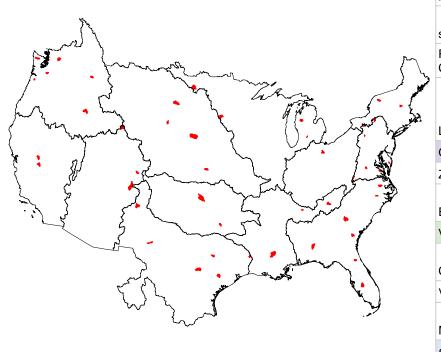

- Determine the number of clusters to use (tricky!)
- Classify the HUC10 and calibration basins into clusters (K-means clustering)


#### Perform parameter regionalization


Identify a donor calibration basin for each HLR (HUC10)

Map back to NWM grid



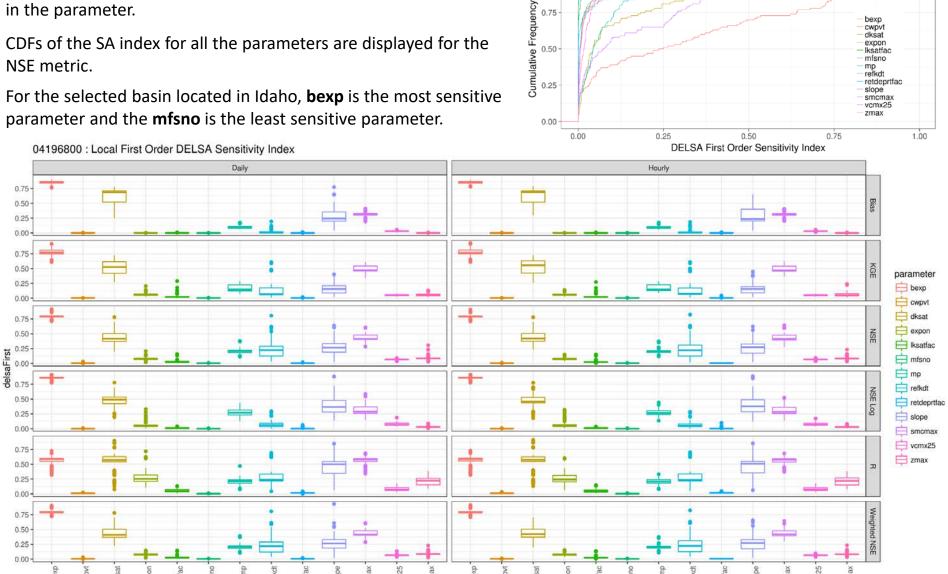







# **Sensitivity Analysis**

Distributed Evaluation of Local Sensitivity Analysis (DELSA), a hybrid local-global sensitivity analysis (SA) method, for extracting useful information on the importance of each parameter, with the added advantage of being relatively low computational cost compared to other common SA methods such as Sobol.



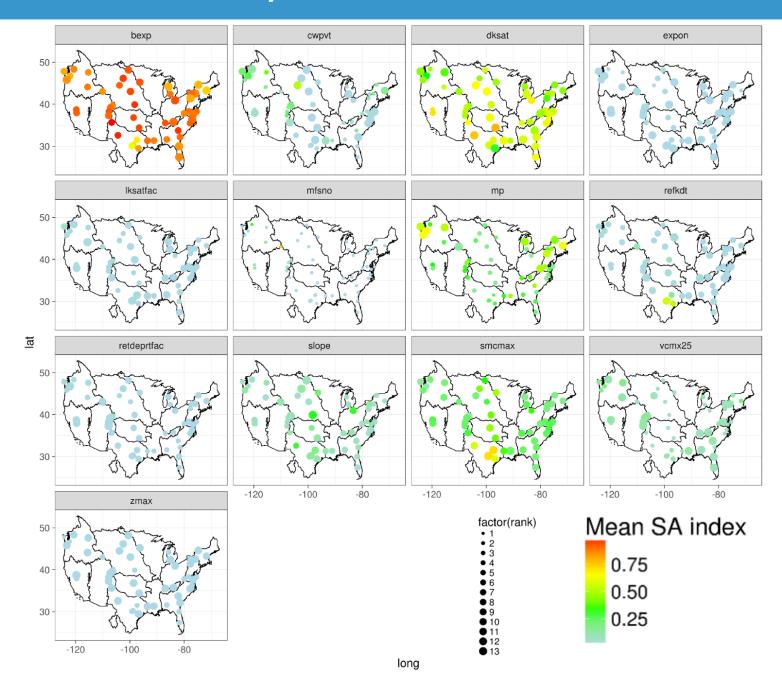

| Name               | Description                                                                                                                                                                                                                         | Units               | value | Value     | Value |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|-----------|-------|--|--|--|--|--|
| SOIL PARAMS        |                                                                                                                                                                                                                                     |                     |       |           |       |  |  |  |  |  |
| bexp               | Pore size distribution index                                                                                                                                                                                                        | dimensionless       | x1    | x0.4      | x1.9  |  |  |  |  |  |
| smcmax             | Saturation soil moisture content (i.e., porosity)                                                                                                                                                                                   | volumetric fraction | x1    | x0.8      | x1.2  |  |  |  |  |  |
| dksat              | Saturated hydraulic conductivity                                                                                                                                                                                                    | m/s                 | x1    | x0.2      | x10   |  |  |  |  |  |
| RUNOFF PARAMS      |                                                                                                                                                                                                                                     |                     |       |           |       |  |  |  |  |  |
| refkdt             | Surface runoff parameter; REFKDT is a tuneable parameter that significantly impacts surface infiltration and hence the partitioning of total runoff into surface and subsurface runoff.  Increasing REFKDT decreases surface runoff | unitless            | 0.6   | 0.1       | 4     |  |  |  |  |  |
| slope              | Linear scaling of "openness" of bottom drainage boundary                                                                                                                                                                            | 0-1                 | 0.1   | 0         | 1     |  |  |  |  |  |
| RETDEPRTFA<br>C    | Multiplier on retention depth limit                                                                                                                                                                                                 | unitless            | 1     | 0.1       | 10    |  |  |  |  |  |
| LKSATFAC           | Multiplier on lateral hydraulic conductivity (controls anisotropy between vertical and lateral conductivity)                                                                                                                        | unitless            | 1000  | 10        | 10000 |  |  |  |  |  |
| GROUNDWATER PARAMS |                                                                                                                                                                                                                                     |                     |       |           |       |  |  |  |  |  |
| Zmax               | Maximum groundwater bucket depth                                                                                                                                                                                                    | mm?                 | 25    | 10        | 250   |  |  |  |  |  |
| Expon              | Exponent controlling rate of bucket drainage as a function of depth                                                                                                                                                                 | dimensionless       | 1.75  | 1         | 8     |  |  |  |  |  |
| VEG PARAMS         |                                                                                                                                                                                                                                     |                     |       |           |       |  |  |  |  |  |
| CWPVT              | Canopy wind parameter for canopy wind profile formulation                                                                                                                                                                           | 1/m                 | x1    | x0.5      | x2    |  |  |  |  |  |
| VCMX25             | Maximum carboxylation at 25C                                                                                                                                                                                                        | umol/m2/s           | x1    | x0.6      | x1.4  |  |  |  |  |  |
| MP                 | Slope of Ball-Berry conductance relationship                                                                                                                                                                                        | unitless            | x1    | x0.6      | x1.4  |  |  |  |  |  |
| SNOW PARAMS        |                                                                                                                                                                                                                                     |                     |       |           |       |  |  |  |  |  |
| MFSNO              | Melt factor for snow depletion curve; larger value yields a smaller snow cover fraction for the same snow height                                                                                                                    | dimensionless       | 2     | 25<br>0.5 | 3     |  |  |  |  |  |

### **DELSA** sensitivity index

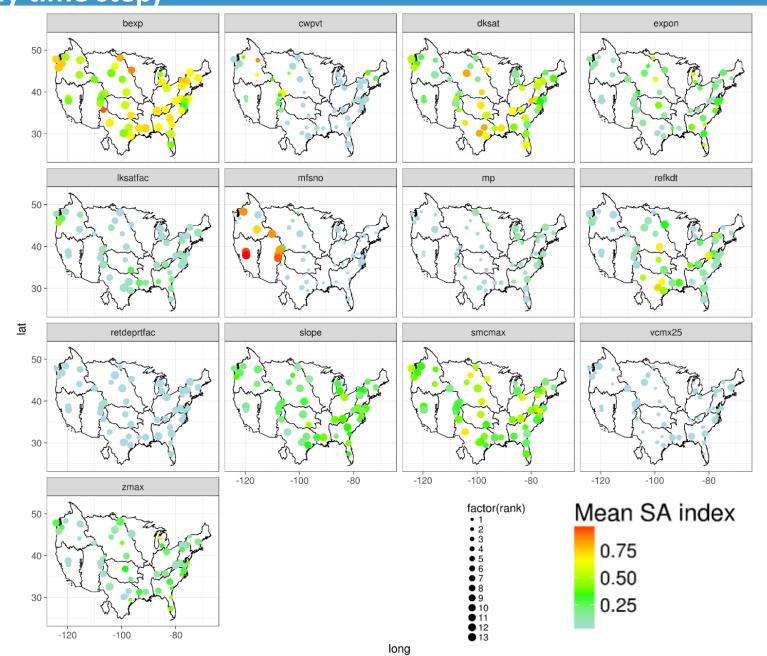
Higher values DELSA sensitivity index indicates the model performance (for this example NSE) is more sensitive to the change in the parameter.

CDFs of the SA index for all the parameters are displayed for the NSE metric.



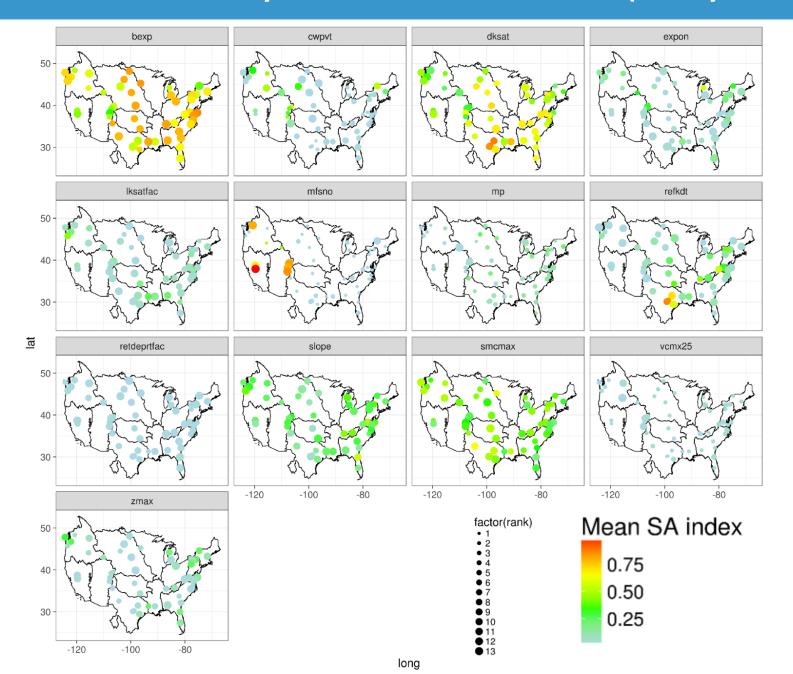

1.00 -

Station ID: 04196800: Tymochtee Creek at Crawford OH


bexp

expon Iksatfac

#### Mean of DELSA sensitivity index for streamflow bias




# Mean of DELSA sensitivity index for streamflow Correlation Coefficient (hourly time step)



28

#### Mean of DELSA sensitivity index for streamflow NSE (hourly time step)



For more information contact:

arezoo@ucar.edu
adugger@ucar.edu

### **THANK YOU!**