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Abstract WRF-Hydro DART Case Study: Hurricane Florence
The Data Assimilation Testbed Research (DART) has been coupled with the 1 We use a one-way-forced channel-bucket routing module which has been * Caused sever damage in the Carolinas in September 2018 primarily as a result of freshwater flooding
community WRF-Hydro modeling system, enabling ensemble data separated from the rest of the NWM configuration of the WRF-Hydro * Many places received record-breaking rainfall, and some places received more than 30 inches of rainfall
assimilation. The coupled Hydro-DART system uses state-of-the-art [ This decomposition allows ensemble operation of streamflow models * Large storm surge along the coast causing widespread flooding
assimilation tools, including spatially and temporally varying adaptive * Heavy rainfall caused widespread inland flooding
inflation (to counter insufficient ensemble spread) and localization along /NWM Forcing Engine | /NoahwpisM . [ Terrain Routing ) (NHDPIuS Catahment o ) * Several cities were inundated such as Fayetteville, Smithfield, Lumberton, Durham, and Chapel Hill -
stream channels (to eliminate spurious correlations). The system is also * Al odule | Agaregation ? * * Major rivers spilled over their banks such as Neuse River, Eno River, Cape Fear River, and Lumber River
equipped with an efficient on-line estimation strategy of various physical ‘ %
and statistical parameters. Wl = /) \_ N AEEVAN el T Topographic Height (m) Accumulated Precipitation (mm)
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The Hydro-DART framework discussed here utilizes a channel-only capability Channel-Bucket-Only Ensemble Data Assimilation Flux (cms) Flux (cms) T gt \ ,
of the WRF-Hydro model with an objective to demonstrate its robustness [\
and high computational efficiency which can be appealing in operational A (pnderson2008) — Mokl N |
settings. Uncertainty in the overland and groundwater channel-influxes is g — (m) T X Noise Model
represented by incorporating stochastic perturbations. The assimilation W, . ;\\ s 1y
framework provides streamflow and parameters estimates via the ensemble L L=<  (cramataresenor
adjustment Kalman filter (EAKF). Here, we present preliminary results and S”(e(f‘rrr‘gow R“”gg;d'eﬁ izzzzzzz_
the initial progress made on the implementation of the Hydro-DART
framework. Testing is performed on regional case studies, looking at large- D o A o dart et v

scale extreme flooding events such as “Hurricane Florence.”

National Water Model Configuration of WRF-Hydro Preliminary Results Conclusions and Ongoing Work
Experiment specification:
The National Water Model, an operational configuration of the WRF-Hydro - Sequential data assimilation: Ensemble adjustment Kalman filter (EAKF) * HydroDART, an ensemble based channel-bucket only DA
model, provides streamflow forecasts for 2.7 million river reaches as well as - Inflation: Recently proposed enhanced adaptive inflation algorithm (El Gharamti, 2018) module for the WRF-Hydro, was developed and evaluated
other hydrologic states and fluxes. The NWM employs a nudging scheme in - Loca.llzatlon: A new .A/0{7g—the-str.eam localization. The observations o.nly.affect a restricted length of u.pstream and downstream stream seFtlons. UrTllke for a regional domain.
. . . Euclidean-based localization techniques, the proposed pattern-based localization ensures that streams from different watersheds are not updated with potentially
which more than 6000 USGS instantaneous streamflow observations are unrelated streamflow data | |
assimilated. This procedure is utilized as a way to provide initial states for - Parametric noise model: To maintain ‘realistic’ variability across the ensemble, parametric noise models are imposed on the overland flux and groundwater flux * A better understanding and formulation of the streamflow
different forecast Configurations a”owing forecasts for up to 30 dayS. contributions to the channel model observation uncertainty Is reqU|red.
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