Weather Evaluation Team (WET)

Presented to:
Friends and Partners in Aviation Weather

Kevin Johnston – ATCSCC
Tom Fahey – Delta Air Lines

July 21, 2010
WET Membership

FAA
- Denver ARTCC
- Atlanta ARTCC
- ATCSCC
- Minneapolis TRACON
- AJP

Core Members - Operators
- Continental
- Delta
- Jet Blue
- Southwest
- United
- UPS

Contractors & Interested Parties
- Air Routing Int’l
- Alaska Airlines
- AvMet Applications
- Environment Canada
- FedEx
- MIT-Lincoln Labs
- Mitre
- National Weather Service (NWS) – Hdqtrs
- NWS - Aviation Weather Center
- NBAA
- NOAA-Earth System Research Laboratory
- TASC
WET Overview

• Responsibilities
 – CDM Focal Point for Feedback & Recommendations on Weather Products/Issues
 • e.g. Added FAA AJP core member to help bridge NowGen to NextGen
 – External Outreach on Weather Issues for CDM
 • e.g. Consolidated Storm Prediction for Aviation (CoSPA) Program
 – Internal Coordination with Other CDM Subteams
 • e.g. Future Concepts (FCT) & Flow Evaluation (FET) Meetings
WET Overview

• 2010 Priorities
 – Overarching goal of proactive outreach to the other CDM subteams

 – Latest (Feb 2010) Prioritized List of Activities:
 • LAMP & CCFP Hybrid (LCH) Demonstration for 2010 and COSPA
 • Extended Planning Process (CDM Flow Evaluation Team lead)
 • Traffic Compression in Terminal Area due to Winds
 • Weather Integration and Decision Support Tools
 • Add Weather Products/Site Links to the FAA’s OIS Page
WET 2010 Priorities - Priority #1

• LCH
 – The Acronym
 • L = LAMP = Localized Aviation Model Output Statistics (MOS) Program
 • C = CCFP = Collaborative Convective Forecast Product
 • H = Hybrid
 – The LAMP Product
 • Probabilistic Forecast out to 25 Hours
 – Covers 2 hr periods (e.g. 2 hr Fcst=1-3hrs, 25 hr Fcst=23-25hrs)
 • Produced Automatically using a Combined Approach
 – Physics Based Computer Model of the Atmosphere
 – Statistics ("M" in LAMP = Model Output Statistics)
 – Observations (Lightning, Radar, etc.)
 • Forecast Graphic
 – Updated Every Hour
 – Coverage is Conus
LCH Example
Status - LCH

• **2009 Demo Met Goal:**
 – 01Jun - 31Aug 2009: limited demonstration with CDM shareholders
 – Objective & Subjective assessments showed LCH met goal to improve confidence in the CCFP & extend the forecast time period

• **2010 Demo in Process:**
 – Coupled efforts with CoSPA to reduce impact on field personnel
 • Training & Assessments
 – Demo started June 1, 2010
 – Includes Trend Analysis Feature

• **WET has recommended for 2011 to:**
 – Expand LCH demonstration to entire CDM community
 – Continue Couple efforts with CoSPA
 – Probabilistic attribute introduces a key NextGen theme that needs exploration with TFM decision maker
Consolidated Storm Prediction for Aviation (COSPA)

- Provides seamless forecast of precipitation and echo top from 0-8 hrs
- Blends high-resolution numerical weather model with CIWS storm extrapolations
- Maintains identical look and feel of CIWS
- Gridded for future integration into FAA Air Traffic Management (ATM) Decision Support Tools (DST)
CoSQA 2010

- **CoSQA Capability**
 - Covers Full CONUS & 0-8 hr Forecast
 - CCFP Forecast Overlay

- **Operational Evaluation: June 1 – Sept 30, 2010**
 - Select FAA facilities & Airline Operation Centers evaluating CoSpa.
 - Investigating benefits & gathering user feedback
 - Coordinated with LCH demo

- **Quality Assessment Verification**
 - Data collection during summer for further analysis
CoSPA 0 – 8 Hour Forecast

- Automated, deterministic, high resolution forecasts of VIL, echo tops
 - 1km spatial, 15 minute temporal resolution
 - Updates every 5 minutes
- Supports translation to weather impacts
- Improved forecasts of storm organization and evolution
WET 2010 Priorities - Priority #2

• Extended Planning Process
 – WET helped coordinate startup of 2 products:
 • Extended Convective Forecast Product (ECFP)
 • Aviation Impact Guidance for Convective Wx (AIGCW)
 – Operational Effort Deferred to later this year
ECFP

Extended Convective Forecast Product
(currently available for experimental use and evaluation on AWC web site)

- Contours drawn at 40, 60 and 80% probability of tstrm
- Hashed areas represent 40-59% probability
- Solid lined areas represent 60-79% probability
- Solid blue filled areas represent >80% probability.

- Updated by 1800Z each day and is valid for time period of 18-24Z the next day (Day 2)
AIGCW

Aviation Impact Guidance for Convective Wx
(currently available for experimental use and evaluation on SPC web site)
AIGCW: Wx Translation for TFM Long Range Strategic Planning

Left: Represents a sample output from SPC SREF forecast. It is presented as a gridded plot, interpolated from a 40 km output grid down to 20 km, to better align with the air traffic data.

Right: Illustrates air traffic in the NAS utilizing a 5-year sample set of historic air traffic data to produce an “air traffic composite”. The data was gridded to construct various composites hourly for every day of the week (e.g., traffic positions on a Tuesday at 22 UTC).
AIGCW: TFM Long Range Strategic Planning

SPC SREF (Wx model data)

Historical Air Traffic

Equates to probability of convection & % time aircraft are in the same grid

All Flight Levels

FL>=250

FL<=100
The weather synopsis on this day was for thunderstorms to develop along the southern edge of a stationary frontal boundary extending southwest from the Mid Atlantic region to Texas.
WET 2010 Priorities - Priority #3

• Terminal/TRACON Winds & Compression
 – Two Part Task
 • Common situational awareness of available wind info;
 CDM community viewing “common operational picture”
 (NextGen theme) of wind info to base TFM impact decision.
 (similar to CCFP for convective weather)
 • Translation of wind information into impact
 Answer the question: When will we see compression?
Status - Terminal/TRACON Winds

• **WET Coordinated w/NWS on a Web Based Wind display**
 – Uses hourly Rapid Update Cycle (weather model) wind forecasts
 – Uses Colors to Highlight when winds forecast to exceed a threshold
 – Example on next slide of the “Wind Speed Outlook”

• **“Translation” of winds to impact**
 – An MIT LL Path Based Shear product is being investigated
Wind Speed Outlook
Psbl Contraint: Terminal Area Compression
(currently available for experimental use and evaluation on ZNY CWSU web site)

NEW YORK TRACON (N90)
WIND SPEED OUTLOOK
PSBL CONSTRAINT: COMPRESSION
ISSUED: 1535Z 3/5/2010
BY: CWSU - NEW YORK

SFC – 7000 FT WIND DATA:
SFC WINDS: N 10-15KT. SOME GUSTS TO 20KT.
WINDS ALOFT: NE 30-35KT BTN 060 AND 070…DECRRG TO LESS THAN 30KT BY 17Z.

GREATES WIND SPEED
BETWEEN
SFC – 7000 FEET
(RED, YELLOW OR GREEN DESIGNATION DOES NOT NECESSARILY MEAN A WIND COMPRESSION EVENT WILL/WILL NOT OCCUR)

LESS THAN 30KT
30-50KT
> 50KT
WET 2010 Priorities - Priority #4

• Weather Integration & Decision Support Tools
 – Convection Forecasts and “Operational Bridging” between Strategic to Tactical domains
 – Weather Impact Traffic Index (WITI)
Framework for Weather Impacts in Decision Support

Weather

CIWS / CoSPA Precipitation & Echo Tops Forecasts

Translation

Pilot Model: Probability of Deviation

Forecast Weather Avoidance Field (WAF)

Operational Needs

RAPT

FCA Capacity Forecast Matrix

Performance Metrics

Operational Needs

Decision Support

Impact Forecasts

Route / flow blockage

Capacity impacts

AIRspace

July 21, 2010

WET (Weather Evaluation Team) Friends & Partners in Aviation Weather / Washington, D.C.
Status:
Wx Integration & Decision Support Tools

• Dec09 - White paper sent to CDM Steering Group (CSG)
 – Strategy: Avoid assigning specific wx fcst products to specific air traffic management (ATM) decision support processes or tools
 – Translate wx fcsts into aviation-centric weather constraints, which can then be converted to impacts on capacity
 – Does not require human interpretation of raw weather information
 – Well aligned with NextGen philosophies

• July10 - Proposed first steps presented to CSG
 – Operational Bridging btwn Strategic & Tactical Decision Making domains.
 – WITI [psbly using LAMP-CCFP Hybrid (LCH)]
 – Other Psbl efforts [e.g. CoSPA + Weather Avoidance Field (WAF)]
Operational Bridging - Today

TFM
Probabilistic

ATMITL
(provider and user)

ATC
Deterministic

30% chance or medium confidence

Operational Bridging
MITL

ITWS

CCFP

CIWS

LCH

CoSPA

Strategic

Tactical

8+ hours

~4 hours

~2 hours

~20 minutes
Operational Bridging - Future

TFM
Probabilistic
30% chance or medium confidence

ATMITL
(provider and user)

ATC
Deterministic
Will or will not

Operational Bridging
(Mesoscale Discussion?)

LCH operational?

CoSPA operational w probability

Operational Bridging

ITWS

Strategic
Operational Bridging
Tactical

8+ hours
~4 hours
~2 hours
~20 minutes
WITI - Background/Purpose

1. Follow up to April 2010 CSG meeting where WET briefed White Paper recommendation on weather integration task
2. WITI currently used as a post analysis tool to access impact of weather on NAS
3. WITI run in real-time would allow TFM planners to objectively assess the impact of weather on the NAS and provide a tool set to make more effective decisions to mitigate weather impact
 - Not tied to any one weather product—can use multiple weather inputs
WITI - Measuring Weather / Traffic Impact

“The Hand the NAS Is Dealt Every Day”

The Weather Index (WITI) expresses severity of weather impact on the NAS, weighted by air transportation service demands.

Local Airport Weather

En-route Convective Weather

Traffic Demand

National Airspace System (NAS)

Capacity, Safety constraints

ATM, Airline Response Strategies

Operational Outcomes
Goals/Objective: Reduce Weather Impact and delays in the NAS due to weather. For the CDM community, use the same information to formulate TFM decisions.

1) Develop the infrastructure required to run WITI on a next-day basis
2) Expand the infrastructure to develop the systems required for a real-time WITI analysis
3) CDM TFM Planners use WITI output to adjust demands on capacity within the NAS
WET LEADS

• Kevin Johnston – FAA
 – Kevin.I.Johnston@faa.gov
 – (703) 904-4414

• Tom Fahey – Industry
 – Tom.Fahey@deltacot.com
 – (404) 715-0177