Turbulence Research in AWRP:
Current initiatives and future challenges

Presented by: Steve Abelman,
Manager, FAA Aviation Weather Research Team

Date: Oct 24, 2013
Outline

• FAA’s Aviation Weather Research Program (AWRP) sponsored initiatives
• Research Evolution Plan (REP) priorities
• Issues and Challenges as we move forward
FAA Aviation Weather Research Program (AWRP) Turbulence Goals

• Enhance NAS safety and increase capacity/efficiency through improved observation and forecasting of turbulence for strategic and tactical use by traffic flow managers, flight crews, and airline dispatch operators.

• To quantify the benefits of providing such data in order to determine the most cost effective and optimal solutions for integrating turbulence data into flight operations.

• AWRP-funded efforts

 + Improve and expand on current turbulence forecast capabilities
 + Support the development of the operational capability to remotely sense turbulence (i.e., satellites and radar)
Turbulence In Situ Observations
Eddy Dissipation Rate (EDR) Turbulence Detection Algorithm

• Software loaded on the Aircraft Condition Monitoring System (ACMS), uses existing sensors to derive a measure of atmospheric turbulence
• Provides turbulence metric: EDR - $\epsilon^{1/3}$ (m$^{2/3}$/s), scale 0.0-1.0
• Aircraft independent
• Current deployment:
 UAL: 72 757s, SWA: 1 737, DAL: 83 737s, 31 767s (~80 when complete)
AWRP Turbulence Forecast Product Development

Graphical Turbulence Guidance

• Current Operational Version
 + Gridded high resolution (13 km) forecasts of turbulence for FL100-450
 + Available as a preflight tool on Operational Aviation Digital Data Service (ADDS)
 + Includes EDR observations as input

• Planned Enhancements
 + Explicit Mountain wave turbulence forecasts for all levels Sfc – FL450 (CY14)
 + “Nowcast” capability (CY14)
 + Satellite feature detectors
 + Convectively-induced turbulence
 + Probabilistic?
The Research Evolution Plan (REP)

- **Purpose:** Provide overarching guidance and strategic direction to facilitate the *identification, selection, prioritization, and effective management* of applied aviation weather research.

- **Scope:** Foundational guidance for the AWRP and its aviation weather research partners during the planning and execution of focused, annual research projects.

- **Goal:** Harmonize end-user priorities in the shorter-term to NAS Enterprise Architecture (EA) and longer-term NextGen goals by developing a widely accepted R&D evolution strategy.
 - Describe, when possible, specific deliverables, or incrementally improving line of deliverables in the short/mid-term that have line of sight connectivity to far-term NextGen goals.
 - REP s have been completed for C&V, Turbulence, In Flight Icing, and Convective Weather. REP s planned for next 15 months include Terminal Winter Weather Impacts, Terminal Winds, Numerical Modeling, and QA.
Top Priorities in the TURB REP

• Turbulence Priority Recommendation One
 ▪ Implement GTG3 and determine if it is accurate enough for flight planning alone or if restrictions to its use are still needed
 ▪ Determine how best to evaluate grid forecast accuracy and determine how accurate it needs to be to “stand alone” as “primary”
 ▪ Build formatters to automate GTG grids into legacy text products augmented by forecasters

• Turbulence Priority Recommendation Two
 ▪ Determine how to commonly share real-time (NTDA-derived presumably) turbulence information to NAS users for avoidance
 ▪ Determine best methodologies to express forecast uncertainty in gridded TURB products

• Turbulence Priority Recommendation Three
 ▪ Add GTG techniques to WAFS TURB Gridded Forecast creation
Probabilistic Turbulence Products

• Users want “deterministic” turbulence products, but all turbulence forecasts are loaded with uncertainty

• So how do craft probabilistic products that relay uncertainty effectively
Strategic vs. Tactical

- Products designed for more tactical applications don’t have a clear path to tactical exploitation.
- Do products designed for strategic planning make a difference in tactical operations?
- What are the implications of making data available in the cockpit that is not available in ATC or to dispatch (and vice versa)?
Commercial Carriers vs. GA

• Clearly one size turbulence product does not fit all (note that transition to EDR should help this issue)

• NTSB statistics indicate the relative differences in turbulence “incidents” between Part 91 and Part 121 carriers
Limits of the Science

- Products like HEMS have been very helpful to the GA community, but can we ever realistically forecast turbulence at a resolution good enough to overlay on google maps?
- If indeed we have the compute power and resources to produce high resolution, rapidly updating products, will they be exploited operationally?
- Can we educate users to understand the transient nature of turbulence?
Role of the Human in/over the Loop

• We regularly underestimate the role of the human in the integration of weather information into NAS decision-making
• The confidence and situational knowledge available by the aviation meteorologist is clearly still valued (well, maybe not this guy!)
• However as higher resolution, rapidly updating models continue to be developed, the role of the human “over the loop” needs to evolve
Policy/Proprietary Issues

- While there seems to be general agreement that ATM leveraging a common weather picture (e.g. the same turbulence forecast for strategic planning) is beneficial, industry produces products and forecasts that airlines and others believe give a competitive advantage.

- Clearly there is no interest in Government to dispute or challenge.

- Can we share data between airlines and countries to maximize the availability of raw data for various applications.
From “SVR” to “.3”

- Though the terms LGT, MDT, and SVR are full of subjectivity, a transition to application of objective turbulence measures is complex.
- GTG is producing forecasts of EDR but it is not yet clear how this will be made available to users effectively.
- There is a significant training and education issue here that must be addressed.
Global Harmonization

• As the U.S. and many other countries develop higher resolution, more accurate forecasts, oceanic flights are looking for consistent forecasts on a global scale.

• Global models from different countries often produce conflicting forecasts.