Tick-Borne Diseases in Humans in the U.S.

C. Ben Beard, MS, Ph.D.
Associate Director for Climate Change
CDC - National Center for Emerging and Zoonotic Infectious Diseases

Chief, Bacterial Diseases Branch
CDC – Division of Vector-Borne Diseases
Outline

• Vectors and diseases
• Incidence and distribution
• Emerging issues and concerns
• Challenges and opportunities
• Priorities for prevention and control
Vectors and Diseases
Important U.S. Tick Vector Species (human health)

- American dog tick - *Dermacentor variabilis*
- Blacklegged tick - *Ixodes scapularis*
- Brown dog tick - *Rhipicephalus sanguineus*
- Gulf Coast tick - *Amblyomma maculatum*
- Lone star tick - *Amblyomma americanum*
- Rocky Mountain wood tick - *Dermacentor andersoni*
- Western blacklegged tick - *Ixodes pacificus*
- Soft ticks – primarily *Ornithodoros hermsi*

http://www.cdc.gov/ticks/geographic_distribution.html
Tick-borne Diseases in the U.S.

- Anaplasmosis*
- Babesiosis*
- Lyme disease (*Borrelia burgdorferi*)*
- *Borrelia miyamotoi* infection
- Other novel *Borrelia* spp
- Bourbon virus
- Colorado Tick Fever
- Ehrlichiosis (including *E. muris*-like agent)*
- Heartland virus infection
- Southern Tick-Associated Rash Illness
- Spotted Fever Group Rickettsia*
- Tick-borne relapsing fever
- Powassan virus infection*
- Tularemia*

Note: Green text denotes recently identified pathogens
*reportable to CDC
Incidence and Distribution
Tick-borne Diseases in the U.S., 2013

<table>
<thead>
<tr>
<th>Disease/agent</th>
<th>Reported cases*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyme disease</td>
<td>36,307</td>
</tr>
<tr>
<td>Spotted Fever Rickettsiosis</td>
<td>3,359</td>
</tr>
<tr>
<td>Anaplasma phagocytophilum</td>
<td>2,782</td>
</tr>
<tr>
<td>Babesia</td>
<td>1,792</td>
</tr>
<tr>
<td>Ehrlichia chaffeensis</td>
<td>1,518</td>
</tr>
<tr>
<td>Anaplasma or Ehrlichia – undetermined/other</td>
<td>251</td>
</tr>
<tr>
<td>Tularemia</td>
<td>203</td>
</tr>
<tr>
<td>Powassan virus</td>
<td>15</td>
</tr>
</tbody>
</table>

*total reported cases – confirmed and probable
Top 10 Notifiable Diseases in the United States, 2013

<table>
<thead>
<tr>
<th>Disease</th>
<th>Case numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Chlamydia</td>
<td>1,401,906</td>
</tr>
<tr>
<td>2. Gonorrhea</td>
<td>333,004</td>
</tr>
<tr>
<td>3. Syphilis</td>
<td>56,471</td>
</tr>
<tr>
<td>4. Salmonellosis</td>
<td>50,634</td>
</tr>
<tr>
<td>5. Lyme disease</td>
<td>36,307*</td>
</tr>
<tr>
<td>6. HIV/AIDS (new diagnoses)</td>
<td>34,969</td>
</tr>
<tr>
<td>7. Pertussis</td>
<td>28,639</td>
</tr>
<tr>
<td>8. Invasive Pneumococcal disease</td>
<td>17,193</td>
</tr>
<tr>
<td>9. Giardiasis</td>
<td>15,106</td>
</tr>
<tr>
<td>10. Shigellosis</td>
<td>12,729</td>
</tr>
</tbody>
</table>

*Total number of cases estimated at close to 300,000 per year
Each dot represents one case reported according to county of residence and not necessarily where the disease was acquired. In 2013, no cases were reported from Hawaii. In Alaska, there were 14 travel-related cases of Lyme disease and one case of tularemia. Babesia was reportable in only 28 states.
Emerging Issues and Concerns
Emerging Issues and Concerns

- Expanding incidence and distribution
- A warming climate
- Novel and emerging pathogens
Reported Cases of Lyme Disease by Year, United States, 1996-2013

*National Surveillance case definition revised in 2008 to include probable cases; details at http://www.cdc.gov/ncphi/disss/nndss/casedef/lyme_disease_2008.htm
Tick-borne Diseases in the United States, 2004-2013

*Includes HGA, HME, and other or unspecified ehrlichiosis
‡Babesiosis became nationally notifiable in 2010
Lyme Disease U.S. Case Distribution – 18 year Trend

Reportable Cases of Vector-Borne Diseases in the U.S., 2013

<table>
<thead>
<tr>
<th>Diseases</th>
<th>2013 Reported Cases</th>
<th>Median (range) 2004-2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tick-borne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lyme disease</td>
<td>36,307</td>
<td>30,495 (19,804-38,468)</td>
</tr>
<tr>
<td>Anaplasmosis/ Ehrlichiosis</td>
<td>4,551</td>
<td>2,187 (875-4,551)</td>
</tr>
<tr>
<td>Spotted Fever Rickettsioses</td>
<td>3,359</td>
<td>2,255 (1,713-4,470)</td>
</tr>
<tr>
<td>Babesiosis</td>
<td>1,792</td>
<td>1,128 (940-1,792)</td>
</tr>
<tr>
<td>Tularemia</td>
<td>203</td>
<td>136 (93-203)</td>
</tr>
<tr>
<td>Powassan virus disease</td>
<td>15</td>
<td>7 (1-16)</td>
</tr>
<tr>
<td>Mosquito-borne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Nile virus infection</td>
<td>2,469</td>
<td>1,913 (712-5,673)</td>
</tr>
<tr>
<td>Malaria</td>
<td>1,594</td>
<td>1,484 (1,255-1,773)</td>
</tr>
<tr>
<td>Dengue</td>
<td>843</td>
<td>624 (254-843)</td>
</tr>
<tr>
<td>California serogroup viruses</td>
<td>112</td>
<td>78 (55-137)</td>
</tr>
<tr>
<td>St. Louis encephalitis</td>
<td>1</td>
<td>10 (1-13)</td>
</tr>
<tr>
<td>Eastern Equine Encephalitis</td>
<td>8</td>
<td>7 (4-21)</td>
</tr>
<tr>
<td>Flea-borne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plague</td>
<td>4</td>
<td>4 (2-17)</td>
</tr>
</tbody>
</table>

Dengue and malaria cases are primarily imported. Babesiosis and Dengue have only been notifiable since 2011 and 2009, respectively. Median and range values encompass cases reported from 2011 to 2013 for Babesiosis and 2010 to 2013 for dengue.
Tick-borne Disease Emergence – Re-emergence in the U.S.

- Reforestation
- Overabundant deer
- Expansion of suburbia into wooded areas
- Abundant habitat around homes for Lyme reservoir hosts
- Increased numbers of ticks
- Increased exposure opportunities in people
- Climate change

Source: K. Stafford, CT Agricultural Experiment Station

Emerging infectious diseases through a One Health Lens

Changes in climate lead to changes in the environment, which result in changes in the incidence and distribution of diseases that have environmental linkages.
Climate, Weather, and Lyme Disease

- Climate (primarily minimum temperature) defines the limit of northern distribution
- Warmer temperatures may increase the reproductive capacity of ticks, leading to larger populations and greater risk for disease transmission to humans
- Higher moisture levels allow ticks to survive in warmer environments
- Temperature and moisture affect the feeding behavior of ticks
- Temperature (measured by cumulative growing degree days) affects seasonality of disease

Climate, Weather, and Lyme Disease

Conclusion:
Climate warming may have co-driven Lyme disease emergence in northeastern North America, and in the future may drive substantial disease spread into new geographic regions, and increase tick-borne disease risk where climate is currently suitable.
Climate Change and Lyme Disease – A More likely Outcome: Changes in Seasonality

Meteorological Influences on the Seasonality of Lyme Disease in the United States

Sean M. Moore,* Rebecca J. Eisen, Andrew Monaghan, and Paul Mead
Research Applications Laboratory, National Center for Atmospheric Research, Boulder, Colorado; Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado

Abstract. Lyme disease (Borrelia burgdorferi infection) is the most common vector-transmitted disease in the United States. The majority of human Lyme disease (LD) cases occur in the summer months, but the timing of the peak occurrence varies geographically and from year to year. We calculated the beginning, peak, end, and duration of the main LD season in 12 highly endemic states from 1992 to 2007 and then examined the association between the timing of these seasonal variables and several meteorological variables. An earlier beginning to the LD season was positively associated with higher cumulative growing degree days through Week 20, lower cumulative precipitation, a lower saturation deficit, and proximity to the Atlantic coast. The timing of the peak and duration of the LD season were also associated with cumulative growing degree days, saturation deficit, and cumulative precipitation, but no meteorological predictors adequately explained the timing of the end of the LD season.
Reported Cases of Lyme Disease in the United States – 2013

1 dot placed randomly within county of residence for each confirmed case
Drivers for Disease Emergence

- Climate and weather
- Changing ecosystems
- Economic development and land use
- Microbial adaptation and change
- Human susceptibility to infection
- Human demographics and behavior
- Technology and industry
- International travel and commerce
- Breakdown of public health measures
- Poverty and social inequality
- War and famine
- Lack of political will
- Intent to harm

Convergence Model for Emerging Diseases

Source: Institute of Medicine 2003 report – Microbial Threats to Health
Novel and emerging pathogens and conditions

- Babesiosis in the NE and upper MW
- Borrelia miyamotoi across the northern U.S.
- Powassan virus in the NE and upper MW
- Heartland virus in Missouri and Tennessee
- Bourbon virus (*Thogotovirus*) in Kansas
- Novel Lyme Borrelia sp. in upper MW
Challenges and Opportunities
Lyme Disease in the U.S. – Current State of Affairs

• The case numbers are higher than they have ever been
• The geographic case distribution is more extensive than ever in the past
• There is significant polarization among key stakeholders
• There is currently no ‘magic bullet’ that is effective for disease prevention and control
Other Concerns

- Fewer scientists specializing in TBDs
- Less research being conducted on TBDs
- Stagnant federal budgets
- Less general interest and awareness in the academic community
- Tick control is largely seen as a responsibility of individual homeowners with limited public support or participation
Priorities for Prevention and Control
Lyme Disease – CDC Strategic Priorities

- Strengthening national surveillance and understanding disease burden
- Identifying and validating effective prevention and control practices
- Improving early and accurate diagnosis and treatment
- Building effective collaborations with key prevention partners
CDC Lyme Disease Prevention Activities – Lessons Learned...

- There are many tools available for killing ticks
- Killing ticks in your own yard doesn’t necessarily equate to reducing risk of illness
- Tick control responsibility should be shared between homeowners and local communities
- The best solutions will probably be IPM* methods, evaluated across a variety of local settings

*Integrated Pest Management
Conclusions

• Tick-borne diseases in humans are increasing in numbers and distribution in the U.S.
• There are numerous research questions still to be answered.
• Prevention and control requires validated tools and methods (diagnosis, treatment, and interventions), and effective collaboration.
• Local solutions are likely to be the best solutions, AND the responsibility should be shared between homeowners and their local communities.
• A integrated understanding of climate, ecology, and epidemiology is critical for predicting and averting epidemics of Lyme and other tick-borne diseases.
Thank you for your attention!

Questions?

The findings and conclusions in this report have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy.