Terminal Area Icing Weather Information for NextGen (TAIWIN)

By: Stephanie DiVito
FAA Aircraft Icing Research, ANG-E282
Date: November 19, 2015
Introduction

• FAA released new aircraft certification icing regulations on November 4, 2014.

• Affects a portion of Part 25 aircraft, addressing Supercooled Large Drop (SLD) icing conditions
 – Changes how affected fleet operate en-route and in terminal area icing conditions

• TAIWIN addresses SLD and other icing conditions in the terminal area
Appendix O (1/2)

• Refer to:
 – Note. Appendix O was known as Appendix X when report was published.
 – Provides explanation of data and analysis used in the development of Appendix O.
Appendix O (2/2)

• SLD environments are freezing drizzle (FZDZ) or freezing rain (FZRA) environments
 – FZDZ Environments - Conditions with spectra maximum drop diameters from 100 μm to 500 μm
 – FZRA Environments - Conditions with spectra maximum drop diameters greater than 500 μm
TAIWIN Objectives

• To develop a capability that encompasses:
 – Real-time representative rate measurement of all ground-level precipitation types and accurate identification of precipitation type
 – Highly resolved, timely icing conditions aloft in the terminal area that quantify cloud properties in four-dimensions (4-D) to support aircraft trajectories
 – Highly resolved, timely diagnoses and forecasts for terminal area freezing precipitation
TAIWIN Stages

- **Stage I:** current state of observational weather information for icing conditions, both at the ground and aloft.

- **Stage II:** capable of identifying and distinguishing between Appendix C and Appendix O icing conditions.

- **Stage III:** capable of distinguishing between the icing conditions defined in Appendix C and the subsets of Appendix O (FZDZ versus FZRA aloft).

- **Stage IV:** capability at a spatial and temporal resolution that allows arrival and departure routings within the terminal area to be tailored with respect to the icing conditions.
TAIWIN Stages

Terminal Area
30 nautical mile radius and 10,000 feet vertical extent

<table>
<thead>
<tr>
<th>STAGES</th>
<th>In-flight</th>
<th>Data Possibilities</th>
<th>Spacing Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>App C & App O</td>
<td>FZDZ & FZRA</td>
<td>CIP/FIP</td>
</tr>
<tr>
<td>II</td>
<td>X</td>
<td>High Res</td>
<td>HRRR/RAP, then add improved use of GOES, ASOS w/FZDZ, radar, etc.</td>
</tr>
<tr>
<td>III</td>
<td>X</td>
<td>X</td>
<td>Model/Obs improvements</td>
</tr>
<tr>
<td>IV</td>
<td>X</td>
<td>X</td>
<td>+ GOES-R, RadIA, etc. Grids match hi-res OBS</td>
</tr>
</tbody>
</table>

Goal: Improve Information, Resolution, and Capability Throughout Stages
10 n. mi./10,000 ft
10 n. mi./4,000 ft
5 n. mi./2,500 ft