Low Power X-Band Phased Radar
A High Resolution UAV and Weather Detection System

Nicolas S. Powell
Rich Moro
Anthony R. Hopf, PhD
Raytheon Company

FPAW/NBAA
19 November 2015

This document does not contain technical data or technology controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.
X-Band Phased Array Radars

Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9.0-9.6 GHz</td>
</tr>
<tr>
<td>Peak Power</td>
<td>125.4W</td>
</tr>
<tr>
<td>Average Power</td>
<td>23W</td>
</tr>
<tr>
<td>PRFs</td>
<td>3317Hz avg (Programmable)</td>
</tr>
<tr>
<td>Pulse Widths</td>
<td>6us (NLFM), 55us (LFM)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>2.5/2MHz, 6MHz total</td>
</tr>
<tr>
<td>Horizontal Polarization BW</td>
<td>2.12° El; 1.85° Az</td>
</tr>
<tr>
<td>Vertical Polarization BW</td>
<td>2.14° El; 1.88° Az</td>
</tr>
<tr>
<td>Side Lobe Level</td>
<td><25dB typ</td>
</tr>
<tr>
<td>Antenna Gain</td>
<td>~37dB</td>
</tr>
<tr>
<td>Cross Polarization</td>
<td>~35dB Boresight</td>
</tr>
<tr>
<td>Instrumented Range</td>
<td>0.5 to 16+ nmi</td>
</tr>
<tr>
<td>Op. Angular Coverage</td>
<td>+/-45° Az by +/-15° El</td>
</tr>
<tr>
<td>Surveillance Update Rate</td>
<td>4.8sec</td>
</tr>
</tbody>
</table>

Multi-Function X-band AESA Radar:
- Phase-phase array provides electronic control – no pedestal motors
- Horizontal search scanning provides surveillance across entire FoV
- Agile tracking beam focuses on detected targets
- Scheduler interleaves surveillance scanning with agile tracking
- Fast update rate and operating frequency provides high resolution
- Low SWaP allows for simple installation, standard network and power
- Low Cost provides versatility in designing coverage areas

Notice: Data on this screen is controlled by restrictions listed on the title page.

Copyright © 2015 Raytheon Company.
LPR Weather Data Processing

Level II Moments
- **Single-Pol**
 - Reflectivity (Z)
 - Velocity (V)
 - Spectral Width (W)
 - Signal-to-Noise Ratio (SNR)
- **Ground Clutter Filter**
 - Single-Delay line clutter canceller for volume surveillance scan data
 - Gaussian model spectral filter for the weather deep probe scan data

Level II Polarimetric Variables
- **Dual-Pol**
 - Differential Reflectivity (Zdr)
 - Correlation Coefficient (RhoHV)
 - Differential Phase (PhiDP)
- **Attenuation Correction**
 - Specific Differential Phase (Kdp) estimation
 - Kdp based attenuation correction of reflectivity and differential reflectivity
- **CASA/AWIPS II compatible NetCDF product files from each panel/node**
 - Radial (az, el, range) coordinates
Agile Beam Technology
Supports Surveillance and Weather

- Full azimuth coverage for both Surveillance and Weather
 - Single polarization weather collected during surveillance
 - 14.4s Surveillance revisit rate
 - Rescan of the full surveillance azimuth repeated
 - Weather deep probe interleaved after weather discovery in surveillance scan

- Track updates for 23 targets (objective 1sec)
 - Scheduler also supports 2s, 3s and 4s Track update for 45, 68 and 90 targets
 - Detection confirmation from surveillance reduces false alarms

System has an adaptable, software programmable multi function scheduler enabled by near instantaneous beam steering
Reflectivity Data Comparison (9/12/2014 Weather Event)

Radars location: LPR in Garland (XGAR) and WSR-88DP in Forth Worth (KFWS)
Grid Spacing of 100 m by 100 m
Weather event compared: September 9, 2014
Weather Demo (Sudbury) 3D Data – AWIPS
Overlapping, Netted Radars and Processing
Key System Benefits - Realized from CASA NWSP Prototype

- **Level II Data and III Products**
 - Alerting and model input data and products
 - Low level (<1000 ft) monitoring and 3-D windfields
 - CASA/AWIPS II compatible NetCDF product files
 - Objective system combines 50+ outputs into a single product files
 - High resolution and Probability of Detection airspace surveillance (cooperative/non-cooperative targets, weather, birds, windfarms, etc.)

- **“Nowcasting” 0-6 hour microscale high resolution weather model input**
 - Turbulence, Icing, precipitation, clouds, etc.
 - Massive data processing may be required
 - Decision support tool inputs
 - Multiple community resource
 - Aviation and surface transportation
 - Energy and utilities
 - Agriculture and commodities
 - Water resource management
 - Financial and insurance markets

- **Raytheon Team**
 - Marlborough – Radar Development and ATC systems
 - Omaha – Meteorological systems (AWIPS, FAA, DoD)
 - Aurora and Colorado Springs – Large data processing (JPSS, NASA, Government Systems)

Notice: Data on this screen is controlled by restrictions listed on the title page.
Copyright © 2015 Raytheon Company.
Merged Overlapped Radar Track Data

Overlayed Raw Track Data from both Radars Illustrates Overlapped Pd Improvement

Merged Pd 90% ave
- Mckinney Pd 0.78 nom
- Garland Pd 0.48 nom
STARS: GBSAA Support Services to UTM

STARS = Aircraft Above 500 ft

- Streamlined Departures
- Vector-Free Arrivals
- All-Weather Approaches

STARS is The FAA Critical Flight Safety Certified System of Record for Terminal Area Traffic Management

Low Altitude Weather Services

- **STARS AVOI Services for Weather Alerts**
 - NextGen Net-enabled Weather
 - Current Wx
 - >3000 ft
 - 6 min+ refresh
 - No collaborative scanning
 - LPR operational relevant Wx
 - Ground to 500+ ft
 - <1 min refresh rates
 - Adaptive / focus scanning
 - Future Wx Dynamic Protection Zone

- Draft rules say sUAS operators must assess (BLOS) weather & winds conditions
- Notice: Data on this screen is controlled by restrictions listed on the title page.

Performance Based Metrics = STARS: GBSAA

- Area Volumes of Interest (AVOI)
- Dynamic Protection Zones (DPZ)
- UAS to other UAS & manned aircraft
- Other air navigation hazards: eg TFRs, No Fly Zones....

STARS: GBSAA = UAS Below 500 ft

(Assumes Surveillance Data Available)

- AVOIs can be:
 - Geographic Point of Interest
 - 3-D Polygon or cylinder with a minimum and maximum altitude
 - AVOIs can be statically displayed or can move with a track.

- Air Force chose STARS: GBSAA solution specifically to integrate with FAA
- STARS: GBSAA 3D Coordinate Based AVOIs can Support Autonomy
 (a future state M2M interface)

Low Altitude Traffic Management Services

- Air Force chose STARS: GBSAA solution specifically to integrate with FAA
- STARS: GBSAA 3D Coordinate Based AVOIs can Support Autonomy
 (a future state M2M interface)
LPR / STARS: GBSAA Enabled Commercial CONOPS

BVLOS Transit Flight Planning / Traffic Management
- LPR enabled low altitude STARS-GBSAA
- Unlikely to be a straight line flight
- Situational awareness for:
 - Commercial flight planning
 - DPZ’s, TFRs, Restricted Air Space,
 - Air Navigation Hazards, Advisory & No Fly Zones
 - BVLOS weather / winds
 - Non-cooperative / non-compliant aircraft
 - FAA – any sUAS that enters manned airspace
 - Birds / Wildlife / Insects
 - Standard FAA interface for exceptions when needed

Traffic Management
- Ground to Transit corridor flight planning
- Full situational awareness
 - Non-cooperatives, Ground traffic
 - Onboard SAA for collision avoidance

BVLOS Package Delivery
- Last “60 ft”
- Onboard SAA for collision avoidance
- Tree and other very low obstacles

Notice: Data on this screen is controlled by restrictions listed on the title page.
Copyright © 2015 Raytheon Company.