Aircraft weather observations: Impacts for regional NWP models

Stephen S. Weygandt
Eric James, Stan Benjamin, Bill Moninger, Brian Jamison, Geoff Manikin*
NOAA Earth System Research Laboratory
*NOAA National Centers for Environmental Prediction

Friends and Partners of Aviation Weather
NBAA Convention, Nov 2-3, 2016
Rapid Refresh and HRRR
NOAA hourly updated models

13km Rapid Refresh (RAP)

Version 3 -- NCEP
implement 23 Aug 2016
Version 4 – GSD
Planned NCEP – Early 2018

3km High Resolution Rapid Refresh (HRRR)

Version 2 – NCEP
implement 23 Aug 2016
Version 3 – GSD
Planned NCEP – Early 2018

Hourly updating ➔ maximize asynoptic observation use
<table>
<thead>
<tr>
<th>Hourly Observation Type</th>
<th>Variables Observed</th>
<th>Observation Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rawinsonde</td>
<td>Temperature, Humidity, Wind, Pressure</td>
<td>120</td>
</tr>
<tr>
<td>Profiler – 915 MHz</td>
<td>Wind, Virtual Temperature</td>
<td>20-30</td>
</tr>
<tr>
<td>Radar – VAD</td>
<td>Wind</td>
<td>125</td>
</tr>
<tr>
<td>Radar</td>
<td>Radial Velocity</td>
<td>125 radars</td>
</tr>
<tr>
<td>Radar reflectivity – CONUS</td>
<td>3-d refl → Rain, Snow, Graupel</td>
<td>1,500,000</td>
</tr>
<tr>
<td>Lightning</td>
<td>(proxy reflectivity)</td>
<td>NLDN</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Wind, Temperature</td>
<td>2,000 - 15,000</td>
</tr>
<tr>
<td>Aircraft - WVSS</td>
<td>Humidity</td>
<td>0 - 800</td>
</tr>
<tr>
<td>Surface/METAR</td>
<td>Temperature, Moisture, Wind, Pressure, Clouds, Visibility, Weather</td>
<td>2200 - 2500</td>
</tr>
<tr>
<td>Surface/Mesonet</td>
<td>Temperature, Moisture, Wind</td>
<td>~5K-12K</td>
</tr>
<tr>
<td>Buoys/ships</td>
<td>Wind, Pressure</td>
<td>200 - 400</td>
</tr>
<tr>
<td>GOES AMVs</td>
<td>Wind</td>
<td>2000 - 4000</td>
</tr>
<tr>
<td>AMSU/HIRS/MHS (RARS)</td>
<td>Radiances</td>
<td>1K-10K</td>
</tr>
<tr>
<td>GOES</td>
<td>Radiances</td>
<td>large</td>
</tr>
<tr>
<td>GOES cloud-top press/temp</td>
<td>Cloud Top Height</td>
<td>100,000</td>
</tr>
<tr>
<td>GPS – Precipitable water</td>
<td>Humidity</td>
<td>260</td>
</tr>
<tr>
<td>WindSat Scatterometer</td>
<td>Winds</td>
<td>2,000 – 10,000</td>
</tr>
</tbody>
</table>
Regional Observation Impact studies with RAP - GSD

- Observation gaps are major source in limiting forecast accuracy, even over US
- New RAP observation impact study covering 3 seasons, 8 observation types

<table>
<thead>
<tr>
<th>Rawinsonde</th>
<th>Aircraft obs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radar reflectivity</td>
<td>VAD winds</td>
</tr>
<tr>
<td>Surface obs</td>
<td>GPS-Met</td>
</tr>
<tr>
<td>AMV (winds)</td>
<td>GOES clouds</td>
</tr>
</tbody>
</table>

- Aircraft data found to be most important observation type for wind, temperature and Relative humidity
 -- Ascent/descent observations both important
 -- Water vapor observations (about 1/8 total) improve RH forecast accuracy (WVSS only, no TAMDAR available to NOAA at this time)
Aircraft observations -- most important data source for weather prediction skill

Impact on WIND in 1000-100 hPa layer

Forecast degradation for withholding each obs type

- Aircraft obs most important for wind accuracy at all forecast lengths
- Significant impact also from rawinsonde, surface observations, GOES observations (likely from clearing of spurious convection)
Observation impact: Raob, Aircraft, GOES

Aircraft observations most important for all variable, times

20% Error reduction (normalized by 6-h fcst – 0-h anx difference)

Withhold:
- ALL Rawinsonde
- ALL Aircraft
- ALL Profiler
- ALL Radar Reflectivity
- ALL VAD winds
- ALL surface obs
- ALL GPS-Met PW
- GOES (clouds / winds)
Smoothed monthly aircraft obs counts

RUC
RAP

6-h upper-level Wind RMS error

Date

of reports

Worldwide count

US count

Solid lines on Left Axis, Dashed lines on Right Axis

Based on reports received by the Canadian Meteorological Centre

http://www.wmo.int/pages/prog/www/GOS/ABO/data/statistics/aircraft_obs_cmc_mthly_ave_daily_reports_by_program.jpg
AMDAAR obs density -- global
FAA aircraft obs study -- ongoing

(GSD, AvMet)

GOALS:

• Quantify gaps in airborne observations
 (spatial, temporal, parameter, etc,)

• Identify most cost effective ways to obtain airborne data
AMDAR obs density -- time of day -- CONUS

Morning
12z – 18z

Afternoon
18z – 00z

Evening
00z – 06z

Overnight
06z – 12z
AMDAR obs density -- Ascending/descending -- CONUS
Color coded by vector difference from RAP background field

Amdar.noaa.gov
Regional Observation Impact studies with RAP - GSD

- Significant gap to achieve profiles every 300 km/3h
 -- achieving frequent aircraft profiles out of regional airports
 estimated to significantly improve forecast accuracy

- Ongoing airborne observation study sponsored by FAA (GSD, AvMet)

- 2017 article by James and Benjamin, MWR

How can we expand this coverage?

Ascent / descent Data for an entire day

0-15 kft
250 hPa RMS vector error vs. raobs over CONUS
RUC / RAP
2010-2015 – 6h forecasts

Steady progress in upper-level wind skill