Winds Study to Support RTCA SC 206 Subgroup 7 Development of Wind Guidance Document for ATM

Principal Investigators – Michael McPartland & Tom Reynolds

Presented at 2016 Summer FPAW

Eldridge Frazier, FAA

Distribution Statement A. Approved for public release: distribution unlimited
NextGen Programs of Interest

- Wind and temperature forecasts can have a significant affect on aircraft trajectory estimation
 - Ground systems
 - Airborne systems \(\leftrightarrow \) (WTIC)

- RTCA SC-206 “Aeronautical Information and Meteorological Data Link Services”
 - Required Time of Arrival (RTA)
 - Wake Vortex Mitigation
 - Interval Management (IM)
Required Time of Arrival Overview

Need for research to inform Minimum Weather Service & 4D-TBO guidance documents
RTCA RTA Performance Research Questions

Determine affect of:

- Forecast source
 - GFS
 - HRRR
 - Perfect forecast (truth)

- Forecast age:
 - Published at least 2 hours prior to in-air update

- Number of FMS descent forecasts levels (DFLs)
 - 4
 - 9

- How descent forecasts are selected
 - Optimized to match wind magnitude
 - Optimized to match trajectory headwind
 - Equidistant spacing (from cruise to surface)
Introduction to GFS & HRRR

- **GFS** (Global Forecast System)
 - 28 km grid (0.5° averaged)
 - 26 pressure levels
 - Published 4 times per day: 00Z, 06Z, 12Z, 18Z
 - Forecast: +03, +06, +12,…+192hrs
 - Global coverage

- **HRRR** (High-Resolution Rapid Refresh)
 - 3 km grid
 - 50 pressure levels
 - Published every hour
 - Forecasts: +01, +02, +03,…+18hrs
 - CONUS
Analysis Methodology

- Identify MDCRS flights that stayed on route
- Use aircraft-measured winds as simulated winds
- Reproduce flights with simulated B757 and advanced FMS

CONOPS

- Provided 2-hr old Wx updates 10 minutes prior to RTA freeze horizon
- Assign RTA time and fix 230 NM from destination
- Descents to ~ 10-15kft
Airports evaluated
- KATL, KBOS, KDEN, KEWR, KMDW, KORD, KPHX

340 flights
- Feb 1 – Mar 31, 2016

GFS & HRRR based on 2 hr forecast

Truth based on MDCRS
Effect of Speed Constraints

- Speed constraints on STARs
 - Reduce speed control authority
 - Thus reduced RTA performance
 - FMS honors speed constraints even with RTA operations (SC-214)

With speed constraints

- RTA Error (secs)
 - Within +/-10sec:
 - 93.5%
 - 94.6%
 - 94.5%
 - 95.2%
 - 98.6%
 - Avg: 3.3, σ: 4.4
 - Avg: 3.3, σ: 4.2
 - Avg: 3.3, σ: 4.0
 - Avg: 3.4, σ: 3.6
 - Avg: 3.5, σ: 4.0
 - Avg: 3.2, σ: 3.2

Without speed constraints

- RTA Error (secs)
 - Within +/-10sec:
 - 100.0%
 - 97.6%
 - 100.0%
 - 97.7%
 - 100.0%
 - Avg: 1.8, σ: 2.5
 - Avg: 2.0, σ: 2.6
 - Avg: 1.6, σ: 2.4
 - Avg: 2.4, σ: 2.7
 - Avg: 2.0, σ: 2.8
 - Avg: 2.1, σ: 2.0

Counts (bin size=2)

FPAW 2016 - 8
MDM 08/03/16
Wake Vortex Mitigation

- FAA looking to wind dependent strategies to increase throughput
- Use wind forecast system to predict “wake safe” regions
- Wake Terminal Mitigation System has access to
 - high fidelity wind observations near the ground (ASOS)
 - Numerical Weather Forecast Model predictions (for above ground)
- WTM System correctly handles forecast model error periods (see right) but at a cost of availability of increased throughput
 - Example wind shift removes availability ~45 minutes
 - System unavailable for hours
- Aloft observations, such as real-time aircraft winds would address this problem

*Closely Spaced Parallel Runway (CSPR)
Interval Management Concept

- ATC provides IM clearance to the aircraft near top of descent (left).
- Pilots follow onboard speed guidance to achieve precise spacing interval at the achieve-by point , Δ behind the target aircraft (right).
- Δ may be a time or a distance
Conclusions

• Wind and temperature forecasts can have a significant affect on aircraft trajectory estimation
• Supporting various RTCA activities
• Key RTA analysis findings
 – 9 DFLs better than 4, but not significantly for cases examined
 – Performance of GFS nearly as good as HRRR
 – Performance with 2-hr HRRR forecast data nearly as good as “truth”
 – Procedural speed constraints have major impact on RTA performance
• Next Steps
 – NAS-wide comparison of flights with and without speed constraints
 – Conduct RTA flights down to Initial Approach Fix
 – Analyze impacts of using aircraft-derived winds
 • Modify Mode-S EHS interrogator
 – Generate methods to provide confidence of wind forecasts
Backups
GFS & HRRR Timelines

GFS

Publications times

HRRR

Forecast lookaheads

etc.
Wx Forecast Performance

Model Wind Forecast Error (Vs. HRRR 0-hr Truth)

RMS Vector Error (knots) vs. Forecast Look-Ahead Time (hours)

- HRRR
- RAP
- GFS
This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8721-05-C-0002 and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

© 2016 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.