CLIMATE CHANGE AND HAZARDOUS CONVECTIVE WEATHER IN THE UNITED STATES: INSIGHT FROM HIGH-RESOLUTION DYNAMICAL DOWNSCALING

GEWEX WORKSHOP

Kimberly Hoogewind1,2, Jeff Trapp2, and Mike Baldwin1

1 Purdue University
2 University of Illinois at Urbana-Champaign

September 7, 2016
INTRODUCTION

HAZARDOUS CONVECTIVE WEATHER (HCW)

- Severe thunderstorm (Significant Severe)
 - Tornado (F/EF2+)
 - Wind ≥ 50 knots (≥ 65 knots)
 - Hail $\geq 1''$ (≥ 2 inches)

- Hazards associated with severe convection have important social and economic impacts
 - Risk to life and property

- **Q:** How might severe thunderstorm activity respond to anthropogenic climate change?
Convective parameters, namely convective available potential energy (CAPE) and 0-6 km vertical wind shear (S06)

\[\text{NDSEV} = \text{CAPE} \times S06 \geq X \] (X is usually 10,000 or 20,000)

Many recent studies
- ↑ mean CAPE, ↓ mean S06, ↑NDSEV

Limitations
- Storms must be initiated in order to realize environment/CAPE!
 - Neglects “lift” ingredient
- Must assume that “efficiency” of environment remains the same in future climate
- Environments are an overestimate in occurrence and coverage
- Unable to infer risk for individual hazard type due to environment overlap

Alternative approach
- High-resolution dynamical downscaling
 - Use IC/BC from GCM to drive high-resolution (~4 km) convection-permitting model
 - *Let the model develop relationship between environmental conditions and events*

Diffenbaugh et al. (2013)
PREVIOUS WORK WITH DOWNSCALING HCW

- High-resolution, convection-allowing (~4 km) WRF simulations (reanalysis/GCM)
- Reasonably recreate observed climatology using a model proxy
- Gensini and Mote (2015) downscaled CCSM3 for future climate
Build upon literature

- A longer term (~30 year) climatology of historical and future synthetic severe climatologies from GCMs
- Simulate entire annual cycle
- What do we gain by downscaling?
 - Are we getting same story as environment approach?

Outline:

1. Data and Methods
2. GCM environment changes
3. Downscaled estimates of HCW
4. Comparing approaches
 - i.e. relationship between environment response and storms produced via dynamical downscaling
GCM SELECTION

GFDSL-CM3

- Coupled atmosphere-ocean model
- 2° x 2.5° lat/lon grid (~200 km)
- Model top of 1 hPa, 48 vertical levels

- **High-performing GCM** compared to NCEP-NCAR reanalysis and radiosonde observations for simulated CIN, CAPE and NDSEV
 - Diffenbaugh et al. 2013; Seeley and Romps 2015

- Historical and RCP8.5 experiments
 - Member r1i1p1

http://www.gfdl.noaa.gov/coupled-physical-model-cm3
RCM MODEL SETUP

REGIONAL CLIMATE MODEL

- WRF-ARW version 3.6
 - CONUS domain
 - 4 km horizontal grid spacing
 - 45 vertical levels, 50 hPa model top
- Two time-slices
 - **Historical baseline:** 1971-2000
 - **Future:** 2071-2100
- Hourly output
- Post processed with NCEP Unified Post Processor (>250 variables)
- Converted to GRIB2
- ~65-70 TB for 60 years of simulations

<table>
<thead>
<tr>
<th>Parameterizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microphysics</td>
</tr>
<tr>
<td>Land surface</td>
</tr>
<tr>
<td>Planetary Boundary Layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal grid spacing</td>
</tr>
<tr>
<td>Domain size</td>
</tr>
<tr>
<td>Vertical levels</td>
</tr>
<tr>
<td>Time step</td>
</tr>
<tr>
<td>Buffer zone</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Initial/Boundary Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature, specific humidity,</td>
</tr>
<tr>
<td>geopotential height, u and v wind,</td>
</tr>
<tr>
<td>surface pressure</td>
</tr>
<tr>
<td>Soil temperature, soil moisture</td>
</tr>
<tr>
<td>Land use/land cover</td>
</tr>
</tbody>
</table>
INTEGRATION PROCEDURE

Daily 0600 UTC re-initialization
• 30 hour integration, first 6 forecast hours discarded due to spin-up
• Runs valid 1200-1200 UTC
• Not widely used in downscaling future climate; more common with reanalyses to retain sequence of observed weather events (e.g. Trapp et al. 2011, Robinson et al. 2013)
• Hong and Kanamitsu (2014) advocate for the frequent re-initialization or spectral nudging approach to limit error growth within the domain

Advantages
• Generate mesoscale details and still preserve consistency of large-scales between RCM and GCM
• Allows for parallelism of simulations

Disadvantages
• Discontinuous across re-initialization point
• Boundaries from previous convection not carried over
• Long memory processes not accounted for (e.g. soil moisture)
 • Secondary importance to atmospheric forcing (Pan et al. 1999)
 • Assuming these adequately handled by GCM
GCM SEVERE ENVIRONMENT DAYS

ANNUAL ANOMALIES (% CHANGE RELATIVE TO 1971-2000 MEAN)

• Projected changes in environments favorable for HCW

• $\text{NDSEV}_{\text{sig}} = \text{CAPE} \times S06 \geq 20,000$
 • CAPE $\geq 100 \text{ J kg}^{-1}$
 • S06 $\geq 5 \text{ m s}^{-1}$
 • CIN $\geq -100 \text{ J kg}^{-1}$
 • Interpolated to 1° lat/lon grid
 • occurs when threshold is met at anytime between 1200-1200 UTC

Mean CONUS NDSEV$_{sig}$ Day Anomaly

- CONUS regional mean (land points only)
- Smoothed with Gaussian filter ($\sigma=5$ years)
SEVERE ENVIRONMENT DAYS

FUTURE CHANGES

DJF

MAM

JJA

SON
GCM ENVIRONMENT

SUMMARY

• Like other GCMS, GFDL CM3 depicts:
 ↑ sfc temperature, specific humidity
 ↑ CAPE, CIN
 ↓ S06 (concentrated on days with lower CAPE)
 ↑ NDSEV_{sig}

• Changes largely a result of robust increases in CAPE

• Overall “season” is lengthened

• Other parameters show marked increase also (e.g., STP, SCP, EHI)
Cannot explicitly simulate severe hazards at 4 km grid spacing, so we must use a model proxy

- **Hourly maximum updraft helicity (UH)**
 - Mid-level mesocyclone detection
 - Commonly used in short term severe storm forecasting
 - 50 m² s⁻² minimum threshold (~99.995 percentile)

\[
UH = \int_{2km}^{5km} w \zeta dz
\]

- Focus on proxy “day” occurrences tallied within 1° lat/lon bounding boxes
 - “Yes” if any grid point within lat/lon bounding box exceeds the specified threshold at anytime over the 24-hour period (1200-1200 UTC)
SEASONAL CHANGES

CHANGES IN DAYS WITH UH > 50 m² s⁻²
SEASONAL CHANGES
CHANGES IN DAYS WITH UPDRAFT VERTICAL VELOCITY > 20 m s\(^{-1}\)
GCM VS. RCM

MAM Mean Standardized Anomaly

<table>
<thead>
<tr>
<th></th>
<th>DJF</th>
<th>MAM</th>
<th>JJA</th>
<th>SON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical</td>
<td>0.888</td>
<td>0.912</td>
<td>0.895</td>
<td>0.784</td>
</tr>
<tr>
<td>future</td>
<td>0.983</td>
<td>0.930</td>
<td>0.947</td>
<td>0.865</td>
</tr>
</tbody>
</table>
GCM VS. RCM

MONTHLY MEAN NDSEV_{sig} DAYS VS. MONTHLY MEAN UH DAYS

CONUS

- **Historical**
 - $y = 0.6229 x + -0.047, R^2 = 0.9011$

- **RCP8.5**
 - $y = 0.3419 x + -0.088, R^2 = 0.7643$

1971-2000

2071-2100
SUMMARY AND CONCLUSIONS

• This study produced high-resolution, dynamically downscaled simulations from GFDL-CM3
 1. 2 30-yr periods (1971-2000 and 2071-2100 (RCP8.5))
 2. Entire annual cycle captured
 3. Insight into the storm-scale response to changes in ambient environmental conditions

• Consistent agreement between GCM and RCM in terms of areas of increased/decreased days of activity
 • The “when and where”, but environments alone cannot infer the “how much”
• Changes in environment efficiency between historical and future periods
 • Addresses initiation problem
 • Environment-event relationship has weakened
 • Justifies downscaling approach

• Cause(s)?
 • Weakening circulation
 • Chang (2012) found reduction in extratropical cyclones in all seasons (e.g. -24.5% in JJA)
 • Coumou (2015) decrease in JJA eddy kinetic energy
 • Increased CIN
ONGOING/FUTURE WORK

- Hazard type
 - Hail, wind, tornadoes

- Variability and sub-daily frequency of HCW

- Convective mode
 - object based approaches

- Perform continuously integrated simulations to compare
THANK YOU!
QUESTIONS?

"Essentially, all models are wrong, but some are useful."

khoogewi@illinois.edu
ACKNOWLEDGMENTS

Committee:
Mike Baldwin, Purdue
Jeff Trapp, Univ. of Illinois Urbana-Champaign
Harold Brooks, NSSL

Computing:
Purdue RCAC
Dan Dietz
Stephen Harrell
Lev Gorenstein
Preston Smith