Introducing the Multi-Scale Kain-Fritsch scheme to the Model for Prediction Across Scales

Allison Michaelis¹, Kiran Alapaty², and Valentine Anantharaj³

¹Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University
²Systems Exposure Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency
³National Center for Computational Sciences, Oak Ridge National Laboratory

Background

- Clouds are critical players in the earth’s climate system
 - Impact radiation balance, surface temperatures, and precipitation generation
 - Influence creation of stratospheric ozone
- Motivation:
 - Most mesoscale models neglect interaction between convective parameterization (CP) and radiation scheme
 - CP schemes have not been adapted for new variable-resolution model grids
- **Project Goal:** Test the performance of the scale-aware Multi-scale Kain-Fritsch (MSKF) CP scheme in the Model for Prediction Across Scales (MPAS)

Methods

- Multi-scale Kain-Fritsch (MSKF) CP scheme includes:
 - Dynamic adjustment timescale
 - Scale dependent entrainment effects
 - Sub-grid scale interactions between clouds and radiation, among other features
- Model for Prediction Across Scales (MPAS) v. 4.0
 - 15-60 km variable resolution mesh
 - Mesoscale reference physics suite:
 - WSM6 microphysics scheme
 - YSU planetary boundary layer scheme
 - RRTMG radiation schemes
 - Noah land-surface model
- CP scheme: MSKF and KF
- NCEP Climate Forecast System Reanalysis (CFSR)
 - 0.5° x 0.5° horizontal grid spacing
 - Used for initial conditions and surface update fields
- Simulation spanned 15 May 2006 – 14 August 2006
 - Conducted on DOE supercomputer Titan

Cloud Cover and Near-Surface Temperature

- Notable increases in cloud cover and using MSKF:
 - Along ITCZ
 - Over parts of southeast Asia
 - Along western coast of India
- General increase in cloud cover over CONUS with MSKF – especially in the NE
- Slight reductions in cloud cover over Gulf of Mexico and off northern CA coast
- Differences in near surface temperature consistent with differences in cloud cover

Precipitation

- Increases in precipitation with MSKF:
 - Along ITCZ
 - Over portions of SE Asia
 - Off west coast of India
- Differences in precipitation correlated with differences in cloud cover
 - Seasonal Average Precipitation (MSKF – KF)
 - Monthly Average Precipitation

Conclusions

- MSKF produces increased cloud cover and precipitation along ITCZ, south of China, and off west coast of India
- Structure of precipitation in MSKF more closely matches observations
- Over CONUS, MSKF results in more cloud cover and reduced 2-m temperature
- Discrepancy in precipitation patterns between KF and MSKF simulations needs to be investigated further

Acknowledgements

- This research was supported by the Research Participation Program ACE program for the U.S. EPA, Office of Research and Development, administered by Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. DOE and the EPA.
- Travel to present this research was provided by NSF grant 1546743, awarded to North Carolina State University
- Bill Skamarock, Laura Fowler, and Michael Duda at NCAR for assistance with implementing MSKF in MPAS

Corresponding Author:
Allison Michaelis (acamras@ncsu.edu)