Diurnal Timescale Feedbacks in the Tropical Cumulus Regime

James Ruppert
Max Planck Institute for Meteorology, Hamburg, Germany

GEWEX CPCM, Tropical Climate Part 1
8 September 2016
Acknowledgements

- Richard Johnson, Sue van den Heever, Eric Maloney, Dave Randall, Cathy Hohenegger
- George Bryan for providing CM1, including assistance
MJO Convective Onset in the Indian Ocean

- Madden–Julian oscillation (MJO) “onset”
- Dynamics of the MJO (DYNAMO; 2011–12)

Ruppert and Johnson (2015, JAS)
MJO Convective Onset in the Indian Ocean

Afternoon cloud deepening
Vertical motion
Cloud-top frequency
Moisture (q')
Composite Diurnal Cycle in DYNAMO Shallow Cloud Regimes
MOIST
DRY
mm s$^{-1}$
10$^{-1}$ g kg$^{-1}$
%

Diurnal Composites (repeated 3x)

Cloud-top frequency from S-PolKa
Study Objective

Does the diurnal cycle of moist convection rectify* onto longer timescales?

- Simulate the cumulus diurnal cycle in a suppressed regime, isolate nonlinear (daily-mean) forcing

*Rectification: intraseasonal upper ocean warming (Webster et al. 1996; Bernie et al. 2005; Shinoda 2005)
Model Framework

• CM1 (Cloud Model 1; Bryan and Fritsch 2002) initialized from mean suppressed phase sounding

• Physics:
 – Morrison 2-moment microphysics
 – Deardorff TKE
 – Goddard LW, SW radiation
 – Surface:
 • Prescribed SST, diurnal cycle (2°C range)
 • Fixed exchange coefficients

• Model Domain:
 – $O(100 \text{ km})$ in x,y, 22 km in z
 – $\Delta x,y = 200 \text{ m}$, $50 \text{ m} < \Delta z < 350 \text{ m}$
Model Framework

• Large scale must be parameterized: “Weak Temperature Gradient” (WTG) balance:
 – Diabatic sources offset by large-scale adiabatic motion \(\rightarrow \mathbf{w}_{wtg} \)
 – \(\mathbf{w}_{wtg} \) diagnosed during runtime, used to advect \(\boldsymbol{\theta} \) and \(q \)
 – Spectral WTG relaxation: \(\theta \)-anomalies endure as an inverse function of depth (Herman and Raymond 2014)

• Diurnal cycle in \(\mathbf{w}_{wtg} \)
Experiment Rationale

- Stretch the diurnal cycle to scale nonlinearity:
 - **NODC**: diurnal forcing (shortwave, SST) fixed to daily means
 - **12H**: diurnal cycle scaled to 12 h
 - **24H**: … to 24 h
 - **48H**: … to 48 h
Day-to-day Evolution

Drying wanes, moistening takes over

Moistening accelerated for longer diurnal period \(\rightarrow\) indicative of diurnal timescale feedback
Mean Differences

Greater convective-cloud activity

Reduced large-scale subsidence

Vertical eddy buoyancy flux

48H – NODC

NODC Differences from NODC

Greater convective-cloud activity

Reduced large-scale subsidence
The Diurnal Cycle Accelerates Onset

WITHOUT DIURNAL CYCLE

WITH DIURNAL CYCLE

Initial State

Final State

Day 1

Day 7
Diurnal Cycle of θ_v

- PBL warmest in the afternoon
- Aloft, signal shifted earlier due to w_{wtg}

Revelle soundings
- Much greater θ_v^* amplitude
Cloud-layer Humidity, Lapse Rate, and Convection

Moisture index $[q^*]$
Stability index $\Delta \theta^*_v$
Vertical eddy buoyancy flux $[F_\theta]$
Cloud-layer Humidity, Lapse Rate, and Convection

SST-driven peak
Cloud-layer Humidity, Lapse Rate, and Convection
Diurnal forcing agents—moisture and stability—amplify with diurnal period

Cloud-layer Humidity, Lapse Rate, and Convection
The Diurnal Cycle Accelerates Onset
Conclusions

• Co-varying diurnal cycles of lapse rate and humidity increase daily-mean convective heating (a nonlinear timescale feedback)

• This timescale feedback accelerates the onset of deep convection, assuming WTG balance
Open Questions

• A more complete treatment of large-scale dynamical coupling is required
 – Large-scale w is crudely represented here \rightarrow substantial amplitude bias in θ, w_{wg}

• Do / how do diurnal timescale feedbacks manifest in other climate regimes?
 – Over land, where the diurnal heating cycle is much stronger
 – Over the Maritime Continent (land–sea contrast)
References

