Strategic Implementation Plan (SIP) for a Community-based Unified Modeling System

System Architecture Working Group

Presented by
Dr. Jim Kinter, George Mason Univ.

Presented at NOAA Community Modeling Workshop
April 18-19, 2017; College Park, MD
System Architecture WG

Membership

<table>
<thead>
<tr>
<th>Member</th>
<th>Affiliation</th>
<th>Member</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cecelia DeLuca (co-chair)</td>
<td>NOAA ESRL</td>
<td>Jim Kinter (co-chair)</td>
<td>COLA/GMU</td>
</tr>
<tr>
<td>Tom Auligne</td>
<td>JCSDA</td>
<td>Mark Iredell</td>
<td>NOAA NCEP</td>
</tr>
<tr>
<td>V. Balaji</td>
<td>Princeton</td>
<td>Jean-Francois Lamarque</td>
<td>NCAR</td>
</tr>
<tr>
<td>Rusty Benson</td>
<td>NOAA GFDL</td>
<td>John Michalakes</td>
<td>NRL</td>
</tr>
<tr>
<td>Ligia Bernardet</td>
<td>NOAA ESRL</td>
<td>Phil Rasch</td>
<td>DOE PNNL</td>
</tr>
<tr>
<td>Arun Chawla</td>
<td>NOAA NCEP</td>
<td>Suranjana Saha</td>
<td>NOAA NCEP</td>
</tr>
<tr>
<td>Philip Chu</td>
<td>NOAA GLERL</td>
<td>Vijay Tallapragada</td>
<td>NOAA NCEP</td>
</tr>
<tr>
<td>Tony Craig</td>
<td>NCAR</td>
<td>Gerhard Theurich</td>
<td>NRL/ESMF</td>
</tr>
<tr>
<td>Arlindo DaSilva</td>
<td>NASA GSFC</td>
<td>Sam Trahan</td>
<td>NOAA NCEP</td>
</tr>
<tr>
<td>John Derber</td>
<td>NOAA NCEP</td>
<td>Mariana Vertenstein</td>
<td>NCAR</td>
</tr>
<tr>
<td>Jim Doyle</td>
<td>NRL</td>
<td>Jun Wang</td>
<td>NOAA NCEP</td>
</tr>
<tr>
<td>Michael Farrar (ex officio)</td>
<td>NOAA NCEP</td>
<td>50% NOAA; 50% external</td>
<td></td>
</tr>
</tbody>
</table>

SAWG initiated in October 2016
SAWG website: https://esgf.esrl.noaa.gov/projects/sawg/
System Architecture WG
Definition and Relevance

- **Definition**: Fundamental organization of a system
 - Components
 - Relationships among components and the environment
 - Principles that govern its design and evolution

- **Relevance for operational prediction**
 - Backbone of a unified modeling system
 - High-performance, reliable, technical and scientific functions for a range of different forecast products

- **Relevance for research community partners**
 - Facilitates experimentation
 - Facilitates participation as full partners in model development
System Architecture

Layers and Elements

General Recommendations

• Meet the needs of stakeholders
• Be cost effective and timely
• Enable acknowledging, managing, and mitigating risks
• Be implemented using modern software engineering practices
• Be interoperable with coupling architectures at U.S. partner institutions

Technical Recommendations

• Document requirements for coupling, outputs, ensembles and data assimilation, workflows, and the interface between atmospheric dynamics and physics
• Support diagnostic interrogation of model output for testing, model evaluation, and operational prediction quality assessment
• Enable high scalability on current and emerging large, high-performance computer systems
System Architecture WG

Initial Findings

Structural Recommendations

• Implement a layered design with clear interfaces that supports deployment of modeling and data assimilation applications at multiple organizations

• Link to governance processes that support the unified modeling system
 – Limit divergence of independent development paths
 – Authorize requirements and milestones
 – Review requirements, code, and processes for obsolescence

• Balance independence with coordination
 – Application development groups have their own requirements and timelines but need to share components and infrastructure as part of a unified modeling system

Modeling Application Recommendations

• Evidence included in initial report
 – Gap analysis (management, unified modeling, ESMF/NUOPC)
 – Sources of requirements
 – Interoperability case studies
Modeling Application Recommendations (cont.)

• Explore feasibility of replicating an existing science approach (e.g. GFDL) using NEMS, with test problems and metrics
 – leverage community interoperability infrastructure and expertise in coupled modeling
 – identify significant differences in framework capabilities
 – assess interchangeability of NEMS and non-NEMS components

• Establish new leads and processes (links to Governance WG)
 – Standing science lead or steering committee responsible for direction of overall NOAA unified modeling system
 – Formal processes that allow for external participation in technical and scientific decision-making
 – Modeling system lead at EMC to serve as the primary POC and coordinator for coupling science and technology

• Partner with CESM and others in the community
 – Engage coupled system science contributors from the broader community
 – Develop community-friendly infrastructure
 – Leverage established outreach and training programs in coupled modeling

• Understand best practices and restructure legacy scripts
System Architecture WG

Key Issues to Resolve

• Relationships among other aspects of system architecture and applications
 – Data assimilation and ensemble applications
 – Physics interface, including aerosols/chemistry
 – Workflow layer
 – Libraries and utilities layer

• Resolution of modeling application strategy following activities and tests

• Critically important governance issues to be resolved with the SIP Governance WG
 – Need for steering body responsible for overall unified modeling system
 – Need for a way to process and implement recommendations
 – Need for integrated and authorized requirements and milestones

• Software process issues to be resolved with the SIP Infrastructure WG
 – Need for modeling lead and software management
 – Need for development coordination across application teams
 – Strategies needed for community engagement in software processes

• Balancing demands on computing and human resources