Opportunities to Leverage Aircraft-Derived Atmospheric Observation Data

Michael McPartland

17 July 2018

LINCOLN LABORATORY
Massachusetts Institute of Technology

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited.
This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

© 2018 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.
Atmospheric observations are critical to aviation activities

Sample Observation Systems
- Ground sensors (e.g., ASOS)
- Balloon sensors (e.g., radiosondes)
- Aircraft-derived observations

Strategic Activities
- Weather Models
- Sample applications
 - Flight Planning
 - Traffic Management

Tactical Activities
- Real-time Tools
- Sample applications
 - ATC Decision-Making
 - Pilot Decision-Making

ASOS = Airport Surface Observation System
Atmospheric observations used to best represent initial conditions in the forecast volume above the surface

Aircraft-derived weather observations are the most important input in wind and temperature forecast accuracy

Average reduction in wind RMS vector error

More important to forecast accuracy

Aircraft-Derived Observations

• Aircraft measurements can be used for atmospheric observations

• Meteorological Data Collection & Reporting System (MDCRS) is current airborne source

• “ADS-B Weather out” could enable greater access to aircraft-based observations, but not for foreseeable future

• Mode S Enhanced Surveillance (EHS) widely available now
 – Can act as near-term surrogate for ADS-B Wx Out

ADS-B = Automated Dependent Surveillance – Broadcast
Observation System Comparisons

<table>
<thead>
<tr>
<th>Observation Source</th>
<th>Horizontal Coverage</th>
<th>Vertical Range</th>
<th>Update Period</th>
<th>Latency</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASOS</td>
<td>900 sites many at airports</td>
<td>Surface only</td>
<td>20 mins/1 min</td>
<td><1 min</td>
<td>Used primarily for airport operations</td>
</tr>
<tr>
<td>Radiosondes</td>
<td>69 sites in CONUS</td>
<td>Ground to >100 kft</td>
<td>12 hours</td>
<td>< 2 hrs</td>
<td>Used primarily for forecast input data</td>
</tr>
<tr>
<td>MDCRS</td>
<td>Limited fleet coverage (~20% current US fleet)</td>
<td>Ground to typical cruise altitudes</td>
<td>6 secs ground, 1 min ascent/descent 7 mins cruise</td>
<td>7-60+ mins, Average is 17 mins</td>
<td>Used primarily for forecast input data</td>
</tr>
<tr>
<td>Mode S EHS</td>
<td>Growing fleet coverage (>50% current US fleet)</td>
<td>Ground to typical cruise altitudes</td>
<td>4.8-12 secs</td>
<td>Seconds</td>
<td>Useful for forecast & real-time operations</td>
</tr>
<tr>
<td>ADS-B Wx Out (future)</td>
<td>None now, could be meaningful % in future</td>
<td>Ground to typical cruise altitudes</td>
<td>~10 secs</td>
<td>Seconds</td>
<td>Specifications not planned until at least 2019</td>
</tr>
</tbody>
</table>

Opportunity to assess enhanced aircraft-derived observations via Mode S EHS to guide development of future applications and ADS-B Weather specifications
Outline

• Background

• Current Aircraft-Derived Observation Systems

• Comparison of MDCRS & Mode S EHS Aircraft-Derived Observation Data

• Recommended Next Steps
Current System Characterization

- MDCRS: North American, 11 airlines reporting
- E-AMDAR: Europe, 14 airlines reporting

Diagram:
- Inertial reference unit
- Clock
- ACARS
- Air data computer
- GPS
- Ground stations
- ARINC
- Meteorological Community

Typical Data:
- Winds
- RH%
- Temp
- EDR

Abbreviations:
- E-AMDAR = European Aircraft Meteorological Data Relay
- ACARS = Aircraft Communications Addressing and Reporting System
- RH = Relative Humidity
- EDR = Eddy Dissipation Rate
MDCRS Spatial/Temporal Coverage

- Current sampling across country is varied and limited to a small percentage of commercial flights/routes

MDCRS Reports Nov 1, 2017 2-3:00 PM EST
Num obs = 22973, Num aircraft = 1776
- MDCRS data are delayed due to batching before transmitting
 - Average observation delay = 17 minutes

Not appropriate for near real-time applications
Sample MDCRS Coverage Around Boston

At BOS, about 5% of scheduled flights report MDCRS data

Limited MDCRS data available for forecasting and real-time applications:
opportunity to leverage Mode S EHS observations
Outline

• Background

• Current Aircraft-Derived Observation Systems

• Comparison of MDCRS & Mode S EHS Aircraft-Derived Observation Data

• Recommended Next Steps
Mode S EHS Based Observation System

Aircraft collects data from its own sources:
- GPS and on-board sensors

Mode S EHS enables interrogation of specific aircraft registers to extract or derive aircraft winds and temperature

<table>
<thead>
<tr>
<th>Register</th>
<th>Content</th>
<th>Comment</th>
</tr>
</thead>
</table>
| 0x50 | • Ground speed
 • True air speed
 • Roll angle
 • Track angle | Used to estimate
 • Wind speed
 • Wind direction
 • Temperature |
| 0x60 | • Mag heading
 • Mach
 • Altitude rate | Only 5% of EHS A/C populate |
| 0x44 | • Wind speed/dir
 • Temperature | |

4.8 or 12 secs update rate
FAA Mode S radars do not currently interrogate relevant registers*
 - Could do so with simple adaptation modifications

Lincoln MODSEF has been adapted to interrogate aircraft within range (60 nmi radius)
 - Data streaming started March 8, 2017

*FAA’s Fremont Valley BI6 radar at Edward’s AFB, which feeds High Desert TRACON (E10), conducts EHS interrogations
Comparison of MDCRS & Mode S EHS Observations Around KBED/KBOS

Nov 1, 2017
2-3:00 PM EST

MDCRS
120 observations

Mode S EHS
9809 observations

>80x increase in atmospheric observations with Mode S EHS vs MDCRS in this case
Comparison of MDCRS & Mode S EHS Observations Around KBED/KBOS

Nov 1, 2017
Observations across 24 hours

Significantly increased time and altitude coverage with Mode S EHS
Magenta points in figures are RAP model grid points initialized from observation data.

Opportunity for forecast models to assimilate higher quantities of more recent data.

RAP = Rapid Refresh forecast model
Observation From Tech Center Radar

Snapshot ~Noon EST
18 June, 2018
Available Wx Observations

All Observed Aircraft
- Elwood, NJ radar
- 15 minute sampling window
- Noon EST, 18 June 2018
- 492 Aircraft observed*

* Observed aircraft with Mode A and Mode C transponders not included in count
Observed Equipage
Mode S & Mode S EHS

Number of Aircraft by Carrier

- Elwood, NJ radar
- 15 minute sampling window
- Noon EST, 18 June 2018
- 492 Aircraft observed
Outline

• Background

• Current Aircraft-Derived Observation Systems

• Comparison of MDCRS & Mode S EHS Aircraft-Derived Observation Data

• Recommended Next Steps
Recommended Next Steps

• FAA
 – Operational considerations
 • Identify and develop operational procedures to take advantage of real-time aircraft-derived observations, inc. to ground and cockpit systems
 – Policy considerations
 • Leverage knowledge gained through near-term Mode S EHS assessment to inform ADS-B Out weather requirements
 – Architectural considerations
 • Conduct analysis on means to collect and disseminate aircraft-derived observations from Mode S EHS to end users, inc. spectrum analysis

• NOAA/FAA
 – Perform benefits analysis on forecast improvements if large quantities of aircraft-derived observations were available, e.g., for high resolution terminal area wind forecasts
Summary

• Leveraging aircraft-derived operations holds significant promise for improving weather forecasting and real-time operations

• Mode S EHS is a currently-available technology enabling immediate access to aircraft-derived observations
 – Inform standards and opportunities for ADS-B Weather Out
 – Potential to enhance forecasting performance
 – Potential to enhance real-time operations
Backup
Fremont Valley, CA, Elwood, NJ, Lexington, MA Mode S EHS Radars

Snapshot 3PM EST
18 June, 2018
Expanding Mode S EHS Aircraft-Derived Observation Analysis

- Incorporated FAA Elwood ARSR-4 for broader coverage (NYC, PHL and DC operations)

- Could ultimately expand to all ARSR/ASR radar coverage areas
MDCRS & MODSEF
Observations Around KBED/KBOS

Nov 1, 2017, 3:00 PM EST forecast assimilation = 15 Minutes

MDCRS
1 observation

Mode S EHS
2225 observations

Age at 3 PM EST
(minutes)

Longitude (degrees)

Latitude (degrees)
MDCRS & MODSEF
Observations Around KBED/KBOS

Nov 1, 2017, 3:00 PM EST forecast assimilation = 30 Minutes

MDCRS
21 observations

Mode S EHS
4956 observations

Age at 3 PM EST (minutes)
MDCRS & MODSEF Observations Around KBED/KBOS

Nov 1, 2017, 3:00 PM EST forecast assimilation = 45 Minutes

MDCRS
58 observations

Mode S EHS
7403 observations

Age at 3 PM EST (minutes)
MDCRS & MODSEF
Observations Around KBED/KBOS

Nov 1, 2017, 3:00 PM EST forecast assimilation = 60 Minutes

MDCRS
120 observations

Mode S EHS
9809 observations

Longitude (degrees)
Latitude (degrees)
Age at 3 PM EST (minutes)
MDCRS & MODSEF
Observations Around KBED/KBOS across Altitudes

Nov 1, 2017, 3:00 PM EST forecast assimilation = 15 Minutes
MDCRS & MODSEF
Observations Around KBED/KBOS across Altitudes

Nov 1, 2017, 3:00 PM EST forecast assimilation = 30 Minutes

MDCRS
21 observations

Mode S EHS
4956 observations

Longitude (degrees)
Pressure Altitude (kft)
Age at 3 PM EST (minutes)
MDCRS & MODSEF
Observations Around KBED/KBOS across Altitudes

Nov 1, 2017, 3:00 PM EST forecast assimilation = 45 Minutes

MDCRS
58 observations

Mode S EHS
7403 observations

Longitude (degrees)
Pressure Altitude (kft)
Pressure Altitude (kft)

Age at 3 PM EST (minutes)
MDCRS & MODSEF
Observations Around KBED/KBOS across Altitudes

Nov 1, 2017, 3:00 PM EST forecast assimilation = 60 Minutes

MDCRS
120 observations

Mode S EHS
9809 observations