WRF Historical and PGW Simulations over Alaska

Andrew J. Newman¹, Andrew J. Monaghan², Martyn P. Clark¹, Kyoko Ikeda¹, Lulin Xue¹, and Jeff R. Arnold³

GEWEX CPCM Workshop II

¹National Center for Atmospheric Research
²Center for Research Data & Digital Scholarship, University of Colorado
³Climate Preparedness and Resilience Program, US Army Corps of Engineers
Motivation

- Alaska has warmed during the recent observational record and is projected to keep warming through the end of the 21st century
 - Extensive observed and projected warming under RCP8.5
- This will drive continued thawing of permafrost, alter the partitioning of rain and snow, and may have potentially large impacts for the water cycle
- Previous analyses of these impacts have relied on GCM or relatively coarse RCM output and are limited in complex topography
- Relatively high-resolution (~4-6 km) needed to be relevant for mesoscale hydrology and reasonable depiction of orographic-atmosphere processes
WRF Configuration

• 1 Sept 2002 – 31 August 2016
 ▫ **4 km grid spacing**
 ▫ ERA-I ICs and BCs
 ▫ No spectral nudging
 ▫ NASA hi-res sea surface temps (SSTs)
• WRF 3.7.1
 ▫ Thompson microphysics
 ▫ Noah-MP with modifications for improved snow simulations
• Pseudo Global Warming (PGW) approach
 ▫ End of century CMIP5 ensemble mean
• Analysis for 10 Water Years (WY) 2003-2012
 ▫ PGW simulation through early 2014
Historical Validation - Precipitation

- WRF overestimates in Central and Northern Alaska
 - Observations may be flawed
 - Extremely sparse and undercatch likely
- Possible underestimation along SE mountains
 - Scale mismatch between observational grid and WRF
 - Observations are based on very coarse CRU gridded anomalies
Historical Validation - Snow

- Noah—MP LSM reproduces seasonal snow except for melt period
 - Melt is too fast in Noah-MP
Historical Validation - An Aside for a Path Forward

- Understand and improve obs product generation

- Acknowledge uncertainty

Newman et al. 2018, in prep
PGW Modifications

- Sea ice concentration (SIC) and SST need care in PGW simulation specification
 - Classic PGW perturbation leads to unrealistic SIC
 - Also unrealistic SST (skin temperature) perturbation in grid points that are ice free in the future
PGW Modifications

- Near surface ocean temperature for SST perturbation
- CMIP5 ensemble median SIC
 - SIC years with same rank (e.g. greatest current climate SIC corresponds to greatest future SIC year in PGW simulation)
 - Maintains current climate annual variability with realistic future SIC
 - Generally consistent with PGW methodology
PGW - Current Climate

- **Temperature**
 - Mean 2-m temperature increase similar to initial CMIP5 perturbation
 - Brooks Range more resistant to warming due to persistent snow
 - Yearly (one day) T_{max} increases less than input perturbations in many regions
 - Snowpack, smaller SST increases
 - Yearly T_{min} increases by extreme amounts
 - Largest increases coincident in and around areas of sea ice loss
- Total precipitation increases across domain
 - Expected result
- Total snowfall similar or slight decreases in most areas
 - Increases in coldest regions
- Decreases in snowfall fractional contribution
PGW – Current Climate

• **Snow water equivalent (SWE)**
 ▫ Broad areas of decline and gain
 ▫ Elevation (or climate) dependent changes
 • Normalized by historical mean SWE
 ▫ Northern vs Southern Alaska
 • Increases in Northern Alaska across nearly all elevations
 • Increases only in highest terrain in Southern Alaska
 ▫ Similar to other domains
Summary

- **Historical and PGW simulation set for Alaska is nearly complete**
 - Historical is complete and published – Monaghan et al. (2018) in JAMC
 - WRF is able to recreate historical climate and most features of snowpack
 - Early melt is most significant departure

- **PGW simulation highlights**
 - Increases in precipitation domain wide
 - Yearly minimum temperatures increase sharply
 - Decreases in snowfall fractional contribution
 - SWE decreases where PGW perturbation shifts climate state to more melt than additional accumulation and vice versa