Acknowledgements: This work was supported under the ONR DRIs Predictability of Seasonal and Intraseasonal Oscillations and Propagation of Intraseasonal Tropical Oscillations, the ONR Navy Earth System Prediction Capability Program, and the NOAA MAPP Subx Project. Computing support was provided by the Navy DoD Supercomputing Resource Center.
Navy ESPC Global Coupled System

Outline
- The Navy need
- System design recap
 - General specifications
 - DA and ensemble specifics
 - NAVGEM physics changes
- Validation results
 - Atmosphere
 - Ocean
 - Sea-ice
- Ongoing design work
- Summary

Highlights
First Navy system to provide atmospheric forecasts beyond 16 days, ocean and ice forecasts beyond 7 days, and ocean and ice ensemble forecasts.

- Madden Julian Oscillation anomaly correlation forecasts above 0.6 out to 20-30 days.
- NAO, AO, AAO, and PNA forecast anomaly correlation above 0.6 for ~10d.
- SST forecast RMSE verified against ship obs is more skillful than climatology for the entire 60 day forecast period.
- Global ocean temperature / salinity forecast RMSE averaged from 8 to 500 meters is more skillful than climatology out to 30 days and salinity out to 20 days.
- Arctic and Antarctic sea-ice extent forecasts better than climatology in some cases out to 45 days.
Navy ESPC Global Coupled System

- Developed to meet Navy needs for global earth system forecasts on timescales from days to months:
- Navy ESPC team: NRL Monterey CA, NRL Stennis MS, NRL DC, NOAA ESMF
- Participating in the NOAA SubX (subseasonal experiment): 45-day forecasts produced 4xweek, 1999-present, provides archive for research and system evaluation, and is being used in real time by National Ice Center for resupply mission and field campaign planning.
Navy ESPC Initial Operational Capability 2020

General specifications

- Very high resolution ocean and ice components compared to other systems.
- Final Operational Capability: FY22 (seasonal forecasts, coupled data assimilation, interactive ocean surface waves).
- Will not immediately replace the stand-alone atmospheric system (NAVGEM ET) due to resource constraints.

<table>
<thead>
<tr>
<th>Forecast</th>
<th>Time Range, Frequency</th>
<th>Atmosphere NAVGEM</th>
<th>Ocean HYCOM</th>
<th>Ice CICE</th>
<th>Waves WW3³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic short term</td>
<td>0-16 days, Daily</td>
<td>T681L60 (19 km) 60 levels</td>
<td>1/25° (4.5 km) 41 layers</td>
<td>1/25° (4.5 km)</td>
<td>1/8° (14 km)</td>
</tr>
<tr>
<td>Probabilistic long term</td>
<td>0-45 days 16 members once per week</td>
<td>T359L60 (37 km) 60 levels</td>
<td>1/12° (9 km) 41 layers</td>
<td>1/12° (9 km)</td>
<td>1/4° (28 km)</td>
</tr>
</tbody>
</table>
Weakly-Coupled Data Assimilation

- Background (prior) forecasts taken from fully-coupled simulation but DA solve is uncoupled
- NAVDAS-AR (hybrid-4DVAR) system used for atmosphere
- NCODA (3DVAR) system used for ocean and ice

Ensemble

- Models: NAVGEM CV3, HYCOM, CICE v4
- Generation: 16 independent DA cycles with randomly perturbed observations
 (not to be confused with an ensemble Kalman filter [EnKF])
 No dynamical conditioning
 No prior/posterior inflation, no stochastic forcing

With current resources, member production must be staggered in time across different machines.

This is a short-term situation.
Kain-Fritsch modifications:

1. Modified cloud top constraint to better represent feedbacks between convection and environmental moisture (Klingaman et al. 2015, JGR)

<table>
<thead>
<tr>
<th>Convection Parameterization:</th>
<th>NAVGEM v1.4</th>
<th>Navy ESPC NAVGEM CV3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAS</td>
<td>Modified Kain-Fritsch</td>
<td></td>
</tr>
</tbody>
</table>

| Boundary Layer Scheme: | Luis | COARE 3 |

Observed moistening rate

![Observed moistening rate graph](image)

NAVGEM CV3 moistening rate

![NAVGEM CV3 moistening rate graph](image)
Illustration: High Resolution Ocean

GOFS 3.1 1/12° Global HYCOM+CICE
NCODA 3dvar (daily mean as background), NAVGEM forcing, ISOP

SST

Salinity

layer=01 temp Jul 14, 2019 00Z [93.0H]

layer=01 salinity Jul 14, 2019 00Z [93.0H]
GOFS 3.1 1/12° Global HYCOM+CICE
NCODA 3dvar (daily mean as background), NAVGEM forcing, ISOP

Sea-ice concentration
GLBb0.08-93.0 Ice Concentration (%): 20190714

Sea-ice thickness
GLBb0.08-93.0 Ice Thickness (m): 20190714
The Navy ESPC coupled analysis shows reduced bias for 10m wind speed over the oceans. In some regions this improvement is on the order of 1.5 to 2 ms⁻¹.
Deterministic 10-m wind speed biases (shading) and wind vector errors (vectors) for operational NAVGEM (top) and Navy ESPC (bottom) averaged for the first 7 days as verified against ECMWF analysis.

Navy ESPC shows improved performance over most of the tropics, western boundary current regions. Degradation in skill off the coast of Antarctica and eastern Indian Ocean.
Navy ESPC Validation: Atmospheric Teleconnection Indices

Distribution of days where individual forecast teleconnection index correlation drops below 0.6 (ensemble mean denoted by “x”)

Navy competitive for teleconnection forecasts, very good for AAO and PNA (higher is better).

*Note: Underdispersion will increase average of individual forecast skill.
Individual forecasts very skillful for RMM1, however, ensemble skill does not match some other centers due to ensembles being under-dispersive.

*Note: Underdispersion will increase average of individual forecast skill.

Distribution of days where individual forecast MJO correlation drops below 0.6 (ensemble mean denoted by “x”)
RMM from the forecast ensemble mean compared against observations, for initially strong MJOs.

Bivariate correlation coefficient

Amplitude bias

phase bias

Negative value indicates weaker and slower MJO than in observations, respectively.

Kim et al. 2019, JGR
Amplitude bias as a function of initial MJO phase and forecast lead day. Numbers in parentheses indicate the number of selected initially strong MJO events. Stipples mark significant results at the 95% confidence level.

Kim et al. 2019, JGR
Navy ESPC Ensemble
Ocean Diagnostics

RMSE, bias, and standard deviation of the ensemble mean ocean temperature over 8-500 m depth.

Dashed lines indicate the GDEM BIAS and RMSE.
Spatial distribution of the forecast day when the SST forecast RMSE crosses the climatological RMSE, validated using ship SST observations.

A 60-day crossing suggests the model has value out to 60 days or longer.
Navy ESPC Validation
Sea-Ice Diagnostics

Observational data: SSMR SSM/I (NSIDC 0051)
Climatology: 2007 to 2017
Ice Edge Defined by 15%

Goessling et al. (2016) GRL

Integrated Ice-Edge Error for the Arctic

Overestimate (blue)
+
Underestimate (red)

Ensemble Members
Model Persistence
Climatological
Ongoing ensemble design work: Dynamical conditioning and stochastic forcing

Methods being tested include relaxation to prior perturbation (RTPP), analysis correction-based additive inflation (ACAI), and SKEB.

NE: 500hPa height bias
- baseline
- best result when all 3 are used

NE: 10m wind speed spread-skill
- best result when all 3 are used
Navy ESPC Global Coupled Ensemble

Summary

• Operational transition scheduled for FY19
• Relatively high resolution ocean ice models (1/12° for ensembles, 1/25° for deterministic)
• Initial results promising; There is much upside as the ensemble design is improved
• Latency issues preclude replacement of stand-alone NAVGEM forecasts
• SubX runs being used by National Ice Center for resupply missions and field campaigns

Current and Future work

• Continue to improve system (esp. ensemble design) for next system update in 2022
• Develop products useful on extended-range timescales with outreach to decision makers
• New NRL FY20-FY22 project to develop extended-range TC prediction products
<table>
<thead>
<tr>
<th>Hours to Days</th>
<th>Weeks-Months</th>
<th>Seasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navy Need</td>
<td>Navy Capability</td>
<td>Navy Earth System Prediction Capability</td>
</tr>
<tr>
<td>Fleet Safety and Operational Readiness</td>
<td>Mesoscale and Global Weather Models</td>
<td>(New Capability => New Products)</td>
</tr>
<tr>
<td>Ship Routing, Force Positioning, Operational Preparedness, Situational Awareness</td>
<td></td>
<td>Advanced Climate Analysis and Forecast (ACAF)</td>
</tr>
<tr>
<td>Long-Range Planning for Training Exercises and Intelligence</td>
<td></td>
<td>Climatology and Historical Analogs (Example: ENSO) Are Used</td>
</tr>
</tbody>
</table>
Navy ESPC Validation: Atmospheric Teleconnection Indices

RMSE of forecast ensemble mean teleconnection index

Navy ESPC competitive in terms of teleconnection index forecasts, despite rudimentary ensemble design
Ongoing ensemble design work: Dynamical conditioning and stochastic forcing

Stochastic Forcing Applied to HYCOM
Salinity on 01, Jan. 2017 after 60 days of integration

No Stochastic Forcing
Stochastic forcing on T&S
Stochastic forcing on T&S, u&v

Stochastic forcing spatial scale: 20 km (T&S, u&v)
Stochastic forcing temporal scale: 1 day (T&S, u&v)
Stochastic forcing RMS amplitude: .01/.002 (T/S)/hr
Stochastic forcing e-folding depth: 50 m (T&S, u&v)

Next step is to apply globally, coupled, across ensembles (underway)