The Development and operational implementation of GRAPES Global ensemble predication system at CMA

Xiaoli Li, Jing Chen, Yongzhu Liu
Fei Peng, Zhenghua Huo

Numerical Weather Prediction Centre,
CMA, Beijing, China
Outline

• SV-based initial perturbations
• Representations of model uncertainties
• The performances of GRAPES-GEPS
• Summary and future work
The GRAPES Global Singular Vectors

- **Global/Regional Assimilation Prediction System (GRAPES) at CMA**
- **GRAPES** global SVs with the Euclidean vector $\hat{X}_i(t_0)$ are calculated as follows:
 \[
 \left(E^{-\frac{1}{2}} L^T P^T E P L E^{-\frac{1}{2}} \right) \hat{X}_i(t_0) = \lambda_i^2 \hat{X}_i(t_0) \\
 X_i(t_0) = E^{-\frac{1}{2}} \hat{X}_i(t_0)
 \]
 - L : Tangent linear model (TLM)
 - L^T : Adjoint model (ADM)
 - P : Projection operator
 - E : Total energy norm

- Total energy norm E is based on variables of GRAPES TLM

\[
\iint_V \left(\frac{\rho_r \cos \phi}{2} (u')^2 + \frac{\rho_r \cos \phi}{2} (v')^2 + \frac{\rho_r \cos \phi c_P T_r}{(\theta_r)^2} ((\theta')')^2 + \frac{\rho_r \cos \phi c_P T_r}{(\Pi_r)^2} ((\Pi')')^2 \right) dV
\]

- u' : the perturbations of u
- v' : the perturbations of v
- $((\theta')')$: the perturbations of perturbed potential temperature θ'
- $((\Pi')')$: perturbations of perturbed Exner pressure Π'
GRAPES Singular Vectors (Version 1)

- 48h optimization time interval (OTI)
- 2.5 degree horizontal resolution and 36 vertical levels
- **Localized regions**: Northern Hemisphere extra-tropics (30°–80°N); Southern Hemisphere extra-tropics (30°–80°S)
- **TLM and ADM (version 1)**: dynamical core of GRAPES_GFS without Linearized physics schemes
- The trajectory of TLM is from forecast of dynamical core of GRAPES_GFS
- Iteration times of Lanczos Algorithm is 50, and 30 SVs are obtained approximately

the shallow unreasonable fast-growing structures in the lower level of model near surface was observed in evolved SVs.
Typical total-energy SVs

• The typical structures of SV based on total-energy norm
 Buizza and Palmer (1994); Lawrence et al (2009); Leutbecher (2012)

• At initial time:
 – the energy maximum of SVs is located in the middle troposphere, and potential energy is dominant
 – westward tilt with height at initial time

• At final time
 – the upward energy transfer to higher troposphere and downward energy transfer toward lower troposphere, the kinetic energy of SVs is dominant at final time
 – upscale energy transfer with a pronounced final-time energy spectral
Localized regions: Northern Hemisphere extra-tropics (30°–80°N); Southern Hemisphere extra-tropics (30°–80°S)

TLM and ADM (version 2) with Linearized PBL scheme

The trajectory of TLM is from forecast of GRAPES_GFS

- Typical energy vertical profile observed in GRAPES SVs at initial time and final time.
- The energy spectrum of GRAPES SVs shows upscale energy transfer at final time
Typical *westward tilt* structure is observed in GRAPES SVs at initial time, and barotropic structure without obvious tilt is shown at final time.
Besides the *westward tilt* structure SVs at initial time, and *Upward energy transfer* and *downward energy transfer* (kinetic energy) are observed at final time.
Improving computational efficiency of GRAPES SVs

- The computation of ADM in SV calculation is most time consuming part
- The computation of the ADM are improved greatly by two aspects:
 - optimize the use of GCR in the ADM
 - increase the computation nodes
- The optimization reduces the computation time from 73 minutes to 55 min on IBM Flex P460

SVs calculation time for each iteration

- 37 minutes on new HPC “PI-Sugon” at CMA (2018)
SV-based Initial Perturbations for GRAPES ensemble

The initial perturbations are obtained from the singular vectors via a multivariate Gaussian sampling technique (Leutbcher, 2008)

Main steps:

(1) Calculating the rescale factors for the SVs based on standard deviation of analysis error: \(\beta_j \)

\[
f_j^2 = \sum_{i=1}^{N} \left(\frac{u_i'}{e_u} \right)^2 + \left(\frac{v_i'}{e_v} \right)^2 + \left(\frac{\theta_i'}{e_\theta} \right)^2 + \left(\frac{\Pi_i'}{e_\Pi} \right)^2
\]

\[
\beta_j = \gamma / \bar{f}_j
\]

The GRAPES SVs: \(\hat{X}(j) = (u', v', (\theta')', ((\Pi')') \)

\(e_u, e_v, e_\theta, e_\Pi \): estimated magnitude of standard deviations of analysis errors

\(\gamma \): The empirical parameter to generate adequate ensemble spread

(2) Using coefficients from random vector with Gaussian distribution to make linear combinations of rescaled SVs to get linearly sampled perturbations

\[
P_i = \sum_{j=1}^{N} \alpha_{i,j} \beta_j \hat{X}(j) \quad i = 1, 2, \ldots, M
\]

the coefficients \(\alpha_{i,j} \) are random number with distribution of \(N(0,1) \)
SV-based initial perturbations for GRAPES-GEPS

(3) The SV-based initial perturbations with the component of evolved SVs

Evolved SVs provided an easy way to include more stable and large-scale directions in generation of EPS initial perturbation (Barkmeijer et. al, 1998)

\[Pert_i = (1 - a)P_i(d, 0) + a EP_i(d - 2, +2d) \]

(4) Adding and subtracting linearly combined SVs from analysis (from GRAPES 3Dvar/4Dvar) to construct perturbed initial conditions for GRAPES global ensemble

\[X_i = X_A \pm Pert_i \]
The Structure of Initial Perturbations

500 hPa geopotential height, temperature perturbation (shaded); wind vector perturbation (arrows)

20 May, 2013, 00UTC
Ensemble Experiments based on Initial Perturbations

- **Exp. INISV**: Initial perturbations generated from initial SVs
- **Exp. EVOSV**: Initial perturbations generated from initial SVs and evolved SVs, coefficient a is 0.1

Configuration of GRAPES-GEPS

<table>
<thead>
<tr>
<th>Experiment period</th>
<th>May 1-31, 2013; 31 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLM/ADM model for SVs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Horizontal resolution: $2.5^\circ \times 2.5^\circ$; Vertical level: 60</td>
</tr>
<tr>
<td>Linear physics in TLM/ADM model</td>
<td>Linear PBL scheme</td>
</tr>
<tr>
<td>SVs computation area</td>
<td>NH: 30° N~80° N; SH: 80° S~30° S</td>
</tr>
<tr>
<td>OTI of SVs computation</td>
<td>48h</td>
</tr>
<tr>
<td>Ensemble size</td>
<td>41 (40 perturbed member + control)</td>
</tr>
<tr>
<td>Forecast length of EPS</td>
<td>10 days</td>
</tr>
<tr>
<td>Initial analysis</td>
<td>GRAPES-3DVar ($0.5^\circ \times 0.5^\circ$; 60 levels)</td>
</tr>
<tr>
<td>resolution of GRAPES_GEPS</td>
<td>Horizontal resolution: $0.5^\circ \times 0.5^\circ$; Vertical level: 60</td>
</tr>
</tbody>
</table>
RMS ERROR AND ENSEMBLE SPREAD

- RMSE of ensemble mean is smaller than that of Cntl, indicating the improvement of EPS
- The relationship between ensemble mean error and ensemble spread is reliable
Larger ensemble spread in EVOSV experiment at different lead times

- Ensemble Spread difference (EVOSV-INISV)

- Larger ensemble spread in EVOSV experiment at different lead times
SVs for tropical cyclones (TCSV) and initial perturbations

Up to six targeted area for tropical cyclone

- **SVs-based Initial perturbation with TCSVs included**

\[Pert_i = (1 - a) P_i(d, 0) + a EP_i(d - 2, +2d) + b TCP_i(d, 0) \]

- Lanczos iteration times: 20
- Linearized PBL, and LSC scheme

TCSVs targeted areas

- **INISV**
- **EVOSV**
- **TCSV**
Tropical cyclone tracks from GRAPES-GEPS

6 TC cases in 2017

RMSE/SPREAD of TC track

With TCSV

No TCSV

Ensemble Tracks of TC (1712)
120 h forecast based on 2017081212 UTC
tracks: OBS = black CTRL = red MEAN = green EPS members = blue

With TCSV

No TCSV
• SV-based initial perturbation
• Representations of model uncertainties
• The performance of GRAPES-GEPS
• Summary and future work
Stochastic Physics (1)-SPPT
Stochastically perturbed physics tendencies (SPPT) scheme

\[\delta X_p = \psi(\lambda, \phi, t) \delta X \]

- Random perturbed Physical tendency
- Random pattern
- Physical tendency

\[\psi(\lambda, \phi, t) = \mu + \sum_{l=1}^{L} \sum_{m=-l}^{l} \alpha_{l,m}(t) Y_{l,m}(\lambda, \phi) \]

\[\alpha_{l,m}(t + \Delta t) = e^{-\Delta t/\tau} \alpha_{l,m}(t) + \sqrt{\frac{4\pi \sigma^2 (1 - e^{-2\Delta t/\tau})}{L(L+2)}} R_{l,m}(t) \]

- Random pattern
 - following **Gaussian distribution**
 - temporal decorrelation scales: 6h
 - the lower and upper limit of random values: [0.5, 1.5]

- Applying stochastic perturbation to model variables (u, v, T, q)

First-order auto-regressive process
Structure of random pattern used in SPPT

(a) the horizontal distribution;
(b) time series of the random number value at an arbitrary model grid
The ensemble experiments with SPPT

Talagrand Histogram

(a) GZ500 over NH at Day 4

GZ500 over NH at Day 8

RMSE Spread skill

RMSE/SPD T850 over TR

RMSE/SPD UV850 over TR

exp1: INISVS
exp2: INISVS+SPPT
Stochastic Physics (2) - SKEB

Stochastic kinetic energy backscatter (SKEB) scheme

✓ SKEB introduces horizontal wind \((u,v)\) stochastically forcing terms through an added tendency terms:

(Charron et. al. 2010)

\[
\left(\frac{\partial u}{\partial t} \right)_{\text{SKEB}} = S_u
\]

\[
\left(\frac{\partial v}{\partial t} \right)_{\text{SKEB}} = S_v
\]

\[
S_u = -\frac{1}{a} \frac{\partial F_\psi}{\partial \phi}
\]

\[
S_v = \frac{1}{a \cos \phi} \frac{\partial F_\psi}{\partial \lambda}
\]

Stream-function forcing

\[
F_\Psi = \frac{\alpha \Delta x}{\Delta t} \Psi(\lambda, \phi, t) \sqrt{\Delta t \hat{D}(\lambda, \phi, \eta, t)}
\]

3D random field
Dissipation rate

Random field (same random generator as SPPT with specified parameters)

from explicit horizontal diffusion

\[
D_{\text{num}} = \sqrt{(u \times du)^2 + (v \times dv)^2}
\]
Structure of u, v wind forcing of SKEB

12 h forecast at model level 30 (initialized at 00 UTC 13 May, 2013)
The GRAPES-GEPS with SKEB

— SV

— SV+SKEB
• SV-based initial perturbation
• The model uncertainties
• The performance of GRAPES-GEPS
• Summary and future work
Operational GRAPES-GEPS (since Dec. 2018)

- **GRAPES-GEPS** has been operationally running at CMA since 26 Dec 2018, replacing previous operational T639-GEPS

<table>
<thead>
<tr>
<th>Forecast Model</th>
<th>GRAPES GFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>0.5° × 0.5° ; 60 layer top at 3hPa</td>
</tr>
<tr>
<td>Initial Perturbation</td>
<td>SVs-based</td>
</tr>
<tr>
<td>Model perturbation</td>
<td>SPPT; SKEB</td>
</tr>
<tr>
<td>Ensemble Size</td>
<td>31 (30 perturbed members + control)</td>
</tr>
<tr>
<td>Forecast length</td>
<td>15 days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Forecast Model</th>
<th>T639L60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>0.28° ; 60 layer top at 0.1hPa</td>
</tr>
<tr>
<td>Initial Perturbation</td>
<td>Breeding Vector-based</td>
</tr>
<tr>
<td>Model perturbation</td>
<td>SPPT</td>
</tr>
<tr>
<td>Ensemble Size</td>
<td>15 (14 perturbed members + control)</td>
</tr>
<tr>
<td>Forecast length</td>
<td>15 days</td>
</tr>
</tbody>
</table>
Performance of GRAPES-GEPS compared with T639-GEPS (1)

- **GRAPES-GEPS**
- **T639-GEPS**

ACC, 500hpa 位勢高度場 “北半球地區”
2016101512-2018043012

0.3 day gain

ACC, 500hpa 位勢高度場 “南半球地區”
2016101512-2018043012

0.8 day gain
Performance of GRAPES-GEPS compared with T639-GEPS (2)

RMSE & Spread, 500hpa 位势高度场“北半球地区”
2017120112-2017123112

NH Z500 RMSE/SPD

Outlier, 500hpa 位势高度场“北半球地区”
2017120112-2017123112

NH Z500 Outlier

CRPS (dgm): HGT P500 GE/NH 12Z, 20171201-20171221

NH Z500 CRPS

SH Z500 CRPS

Difference w.r.t. T639

AC differences outside of outline bars are significant at the 95% confidence level

Forecast Hour
Overall, GRAPES-GEPS has better performance than T639-GEPS

Score cards (CRPS; Ens Mean RMSE)

<table>
<thead>
<tr>
<th>Domain</th>
<th>Parameter</th>
<th>Level</th>
<th>CRPS</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asia</td>
<td>UWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>VWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>TEMP</td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>500</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td>NH Extratropics</td>
<td>UWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>VWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>TEMP</td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>500</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td>SH Extratropics</td>
<td>UWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>VWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>TEMP</td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>500</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td>Tropics</td>
<td>UWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>VWND</td>
<td>250</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850</td>
<td>Better</td>
<td>Better</td>
</tr>
<tr>
<td></td>
<td>EGT</td>
<td>500</td>
<td>Better</td>
<td>Better</td>
</tr>
</tbody>
</table>

△: Better
▼: Worse

Overall, GRAPES-GEPS has better performance than T639-GEPS.
Performance of operational GRAPES-GEPS (201901-201905)

RMSE/SPD

ACC of GZ500 at Day 7

GZ500 over NH grids of GRAPES_GEPS at 7 day
Forecast of blocking high at middle range

Example: 00 UTC 5 Feb. 2019

The development Ural blocking high before breakout of cold wave

GRAPES_GEPS is able to give the useful information for the development of the Ural blocking high 7-10 days earlier

500hPa Spaghetti (5360, 5680, 5880)

500hPa Ensemble mean /ensemble spread
Forecast for onset of South China Sea Monsoon 2019

- The monsoon index

• Monitor Area of South China Sea monsoon 850hpa (10°-20°N, 110°-120°E)

• 850hpa Zonal wind and pseudo-equivalent potential temperature are used as index of onset of monsoon (by National Climate Center of CMA)

The onset of Monsoon on 6th-7th May

Dot line - Obs
Solid lines – forecasts at 1d, 5d, 7d, 10d, and 14d
Summary and future work

• SV-based initial perturbation contribute the major performance of GRAPES-GEPS: ensemble spread and forecast skills

• The empirical parameters in the generation of SV-based initial perturbation will be tuned when GRAPES model is upgraded

• The improvement for TC SVs will be focused on the improvement of linearized moist physics

• The model uncertainty of GRAPES-GEPS will be focused on the improvement of existed SPPT and SKEB