Wave Ensemble Verification

Benoit Pouliot, Natacha Bernier, Syd Peel, Patrick Timko

8th NCEP Ensemble User Workshop
August 29, 2019
Outline

• CMC wave ensemble
• Data availability
• Verification at buoys
• Satellite verification
• Next steps
CMC GEWPS – Global Ensemble Wave Prediction System

One control plus 20 members
Model: WaveWatch III
Two 799 x 267 grids: Yin-Yang 39 km
Minimum resolution: ~26.5 km
Time step: 900s (vs 100s for lat-lon 86N)
No perturbation, spread from forcings
No DA. Member by member cycling allows persistence of spread
Winds from CMC GEPS (Global Ensemble Prediction System)
Ice forecast from coupled GDPS (coupled GEPS from July 3)

Figure 2: Yin subgrid (left) Yang subgrid (middle) Yin-Yang grid (right).
NAEFS Wave Data Availability for Verification (as of August 2019)

<table>
<thead>
<tr>
<th>Center</th>
<th>Resolution (degree)</th>
<th>Frequency</th>
<th>Number of members</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCEP</td>
<td>0.5</td>
<td>3-hourly</td>
<td>20+1 control</td>
</tr>
<tr>
<td>FNMOC</td>
<td>1.0</td>
<td>6-hourly</td>
<td>20</td>
</tr>
<tr>
<td>CMC*</td>
<td>0.35</td>
<td>Hourly</td>
<td>20+1 control</td>
</tr>
</tbody>
</table>

* Only available internally at CMC at this time

- **FNMOCSOC**
 - In the process of being made publicly available at 0.5 degree, 3-hourly

- **CMC**
 - Not operational yet
 - Public availability target is summer 2020
 - Likely will be made available at 0.5 degree, 3-hourly
Wave Verification at buoys

- Using JCOMM quality controlled observations
- No time interpolation: using 6-hourly forecast and corresponding observation
- Linear spatial interpolation
- Excluding buoys within 1 grid point of coast of any model
- Period of evaluation: February 2 to June 30, 2019
Verification at buoys

Distribution of observed significant wave height

- All but one in North Hemisphere
Continuous Rank Probability Score (CRPS) of Hs at buoys
Root Mean Square Error (RMSE) of Hs Ensemble Mean at buoys
Reduced Centered Random Variable (RCRV) – Dispersion of Hs at buoys
Brier Skill Score of Hs within 1-2 m at buoys
Brier Skill Score of Hs within 3-5 m at buoys
Wave Verification with Satellite Altimeter

- Time interpolation: nearest neighbour if within 30 minutes of observation
- CMC and NCEP: 3-hourly; FNMOC 6-hourly
- Spatial interpolation: linear
- Aggregation of data over 24 hours in 2x2 degree bins

- Satellites included: SARAL, Jason-2*, Jason-3
- Satellites to come: Cryosat-2, Sentinel-3A/3B

- Period of evaluation: February 2 to June 30, 2019

* Jason-2 unavailable February 17 to May 21
Satellite Altimetry Population

- FNMOC lower population due to 6-hourly data & data processing approach
Satellite Altimetry
Mean Observed Hs

- FNMOC mean observed Hs more jumpy due to smaller population
Satellite Altimetry: Continuous Rank Probability Score (CRPS) at Day 7

- NCEP better in North Atlantic
- CMC and FNMOC better in Southern Ocean
Satellite Altimetry
CRPS Difference Day 7

- NCEP better in North Atlantic, Amazon and Madagascar
- Generally neutral in North Pacific
- CMC significantly better in Southern Ocean
Discussion

- Ensembles from each centers have their strengths and weaknesses
 - NCEP generally better in North Hemisphere
 - CMC and FNMOC generally better in South Hemisphere
 - NCEP has good RMSE of ensemble mean but lacks spread
 - CMC has fair spread but seems to struggle with larger waves
 - FNMOC overall well balanced
- Two wave ensembles together generally perform better than any single ensemble
- The combined CMC-NCEP-FNMOC wave ensemble at buoys is best or near-best for all metrics studied here
- NAEFS type cooperation is valuable
Next steps

• Satellite verification of combined ensembles
• Further automation of verification process
• More satellites
• Availability of FNMOC wave data at 0.5 degree at 3-hourly interval
• Operational implementation of Canadian wave ensemble – target spring 2020

Thank you!

Contact: benoit.pouliot@canada.ca