
Welcome!	
  
Seminar:	
  An	
  Introduc4on	
  to	
  the	
  Analog	
  

Ensemble	
  Technique	
  for	
  Beginners	
  	
  	
  

Please	
  take	
  a	
  copy	
  of	
  the	
  
reading	
  materials	
  and	
  survey	
  

located	
  on	
  the	
  chair	
  in	
  the	
  
front	
  of	
  the	
  room.	
  We	
  will	
  

begin	
  shortly.	
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Special	
  thanks	
  to	
  Dr.	
  Luca	
  Delle	
  Monache	
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  Dr.	
  Sarah	
  Tessendorf	
  



OUTLINE	
  
•  Introduc4on	
  

•  What	
  is	
  an	
  analog?	
  	
  
	
  
•  Overview	
  of	
  the	
  analog	
  ensemble	
  
technique	
  	
  

	
  
•  Differences:	
  Tradi4onal	
  analogs	
  vs	
  
the	
  AnEn	
  technique	
  

•  Current	
  state	
  of	
  the	
  art	
  with	
  the	
  AnEn	
  

•  Discussion	
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INTRODUCTION	
  

•  Applications  
–  Renewable energy forecasts 
–  Air quality forecasting 
–  Wind resource assessment  
–  10-m wind speed 
–  Downscaling 
–  Hurricane intensity  

•  Provide a quantifiable and justifiable means of 
uncertainty for the variable being predicted 

4 

The	
  Analog	
  Ensemble	
  (AnEn)	
  seeks	
  to	
  generate	
  a	
  probability	
  
distribu9on	
  func9on	
  for	
  a	
  variable	
  of	
  interest	
  from	
  a	
  current	
  forecast	
  

and	
  corresponding	
  sets	
  of	
  historical	
  forecasts	
  and	
  observa9ons	
  	
  



ANALOGS	
  

•  What	
  is	
  a	
  weather	
  analog?	
  

5 

Tradi4onal	
  use	
  in	
  meteorology	
  	
  
•  Lorenz	
  (1969)	
  	
  
•  van	
  den	
  Dool	
  (1994)	
  	
  
•  Hamill	
  &	
  Whitaker	
  (2006)	
  	
  	
  

van	
  den	
  Dool,	
  1989	
  



OVERVIEW OF THE ANALOG 
ENSEMBLE TECHNIQUE  



TERMINOLOGY	
  

•  Determinis4c	
  Forecast	
  Models	
  
–  Provides	
  one	
  single	
  state	
  

•  Ensemble	
  Forecast	
  Models	
  
–  Provides	
  a	
  range	
  of	
  possible	
  

states	
  

7 Source:	
  PSU	
  Electronic-­‐wall	
  



UNCERTAINTY	
  &	
  FORECAST	
  MODELS	
  

8 Source:	
  Slingo	
  &	
  Palmer,	
  2011	
  



ANALOG	
  ENSEMBLE	
  TECHNIQUE	
  

9 

Depic4on	
  of	
  the	
  process	
  used	
  to	
  find	
  analog	
  ensemble	
  members	
  

(Delle	
  Monache	
  et	
  al.,	
  2011;	
  2013)	
  

The	
  quality	
  of	
  the	
  analog	
  is	
  determined	
  by	
  the	
  metric	
  below	
  

!! ,!!! = ! !!
!!!

!!

!!!
!!,!!! − !!,!!!!

!
!

!!!!
!!!!

Create	
  a	
  4-­‐member	
  ensemble:	
  	
  



Wed	
  

ANALOG	
  ENSEMBLE	
  TECHNIQUE	
  

10 Figure	
  adapted	
  from:	
  Delle	
  Monache,	
  Penn	
  State	
  Meteorology	
  Colloquium	
  Presenta4on,	
  12	
  Nov	
  2014	
  
Predic4on	
   Observa4on	
  

Mon	
   Wed	
  Tues	
   Thurs	
   Fri	
   Sat	
   Sun	
  

t	
  =	
  0	
  

most	
  similar	
  least	
  similar	
  

4-­‐member	
  AnEn	
  

Sun	
  Fri	
  Tues	
  



EXAMPLE	
  OF	
  ANALOG	
  SELECTION	
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EXAMPLE	
  FROM	
  A	
  SINGLE	
  DAY	
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BENEFITS	
  OF	
  THE	
  1D	
  ANEN	
  TECHNIQUE	
  

•  Does	
  not	
  rely	
  on	
  ini4al	
  condi4ons,	
  model	
  perturba4on	
  
strategies,	
  or	
  post	
  processing	
  requirements	
  

•  Ability	
  to	
  capture	
  flow	
  dependent	
  error	
  characteris4cs	
  

•  Compensate	
  for	
  model	
  bias	
  

•  Ability	
  to	
  use	
  higher	
  resolu4on	
  forecasts	
  
	
  
•  Computa4onally	
  scalability	
  

14 



SUCCESSFUL	
  IMPLEMENTATIONS	
  

•  Ini4al	
  development	
  of	
  the	
  AnEn	
  technique	
  at	
  NCAR	
  

•  AnEn	
  technique	
  described,	
  tested,	
  and	
  validated	
  

•  Air	
  quality	
  applica4ons	
  	
  

•  Downscaling	
  applica4ons	
  	
  

•  Renewable	
  energy	
  applica4ons	
  

15 

Delle	
  Monache	
  et	
  al.,	
  2011	
  

Delle	
  Monache	
  et	
  al.,	
  2013	
  

Pinto	
  et	
  al.,	
  2013	
  	
  	
  

Djalalova	
  et	
  al.,	
  2013	
  

Alessandrini	
  et	
  al.,	
  2014;	
  Vanvyve	
  et	
  al.,	
  2015;	
  
Alessandrini	
  et	
  al.,	
  2015;	
  Cervone	
  et	
  al.	
  2017	
  



DIFFERENCES BETWEEN 
TRADITIONAL ANALOGS AND THE 
ANALOG ENSEMBLE  



TRADITIONAL	
  ANALOGS	
  
•  Post-­‐processing	
  tool	
  based	
  

on	
  the	
  mean	
  of	
  a	
  NWP	
  
ensemble	
  

•  Typically	
  a	
  calibra4on	
  tool	
  
for	
  modeling	
  

•  Por4on	
  of	
  the	
  historical	
  
repository	
  u4lized	
  

ANALOG	
  ENSEMBLE	
  TECHNIQUE	
  
•  Generated	
  using	
  dynamics-­‐

based	
  model	
  predic4ons	
  
sought	
  independently	
  at	
  
each	
  loca4on	
  over	
  a	
  3-­‐point	
  
4me	
  window	
  using	
  
mul4variate	
  metric	
  	
  

•  En4re	
  historical	
  repository	
  
(available	
  for	
  a	
  respec4ve	
  
dataset)	
  is	
  used	
  

DIFFERENCES	
  

17 



OPTIMAL	
  PREDICTOR	
  WEIGHTING:	
  TAKE	
  1	
  
•  Studied	
  op4mal	
  predictor	
  weigh4ng	
  at	
  five	
  wind	
  farms	
  (1	
  
–	
  U.S.;	
  4	
  –	
  Italy)	
  for	
  wind	
  power	
  forecas4ng	
  

•  Data:	
  Corresponding	
  historical	
  forecasts	
  containing	
  14	
  
parameters	
  and	
  observa4ons	
  of	
  wind	
  power	
  output	
  for	
  
varying	
  periods	
  of	
  4me	
  at	
  each	
  site	
  	
  

•  Lessons	
  Learned:	
  	
  
–  Sta4c	
  weigh4ng	
  performed	
  as	
  well	
  as	
  or	
  bemer	
  than	
  dynamic	
  
predictor	
  weigh4ng	
  strategies	
  	
  

–  The	
  variable	
  to	
  be	
  predicted	
  also	
  tends	
  to	
  be	
  the	
  best	
  
predictor	
  (in	
  general)	
  and	
  thus	
  receives	
  the	
  greatest	
  weight	
  
(influence)	
  

–  Forecasts	
  improved	
  with	
  op4mal	
  weigh4ng	
  

18 
Junk	
  et	
  al.	
  (2015)	
  	
  



OPTIMAL	
  PREDICTOR	
  WEIGHTING:	
  TAKE	
  2	
  
•  Studied	
  op4mal	
  predictor	
  weigh4ng	
  at	
  550	
  METAR	
  sta4ons	
  across	
  

the	
  CONUS	
  for	
  temperature	
  (2-­‐m)	
  and	
  wind	
  speed	
  (10-­‐m)	
  

19 Clemente-­‐Harding	
  et	
  al.	
  (In	
  prepara4on)	
  	
  

•  Data:	
  	
  
–  550	
  METAR	
  sta4ons	
  
–  Environment	
  Canada	
  (EC)	
  
Regional	
  Model	
  

–  Dura4on:	
  15	
  months	
  
•  Lessons	
  Learned:	
  	
  

–  Confirmed	
  results	
  of	
  Junk	
  
et	
  al	
  (2015):	
  The	
  variable	
  
to	
  be	
  predicted	
  also	
  tends	
  
to	
  be	
  the	
  best	
  predictor	
  
(in	
  general)	
  and	
  thus	
  
receives	
  the	
  greatest	
  
weight(influence)	
  

–  Forecasts	
  improved	
  with	
  
op4mal	
  weigh4ng	
  	
  

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Pressure

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Temperature

● ● ● ● ●1.0 0.8 0.6 0.4 0.2

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

Wind Speed

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

Wind Direction

M
et

ric
 W

ei
gh

t

0.0 0.2 0.4 0.6 0.8 1.0

P
T

WS
WD



CURRENT STATE OF THE ART FOR 
THE ANALOG ENSEMBLE  



GRID	
  BASED	
  IMPLEMENTATION	
  OF	
  THE	
  ANEN	
  

•  Objec4ve:	
  Generate	
  two	
  dimensional	
  (2D)	
  
gridded	
  fields	
  using	
  the	
  AnEn	
  	
  

•  The	
  AnEn	
  technique	
  is	
  applied	
  to	
  each	
  grid	
  and	
  
each	
  grid	
  is	
  treated	
  as	
  a	
  point	
  	
  

•  Results:	
  Spa4al	
  and	
  temporal	
  consistency	
  is	
  
degraded	
  therefore…..	
  	
  

21 Spera4	
  et	
  al.	
  (under	
  review)	
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GRID	
  BASED	
  IMPLEMENTATION	
  OF	
  THE	
  ANEN	
  

•  Researchers	
  u4lized	
  the	
  Schaake	
  Shuffle,	
  a	
  
technique	
  developed	
  for	
  reconstruc4ng	
  spa4al	
  
and	
  temporal	
  variability	
  in	
  forecast	
  variables!	
  	
  	
  

22 Clark	
  et	
  al.	
  (2004);	
  Spera4	
  et	
  al.	
  (under	
  review)	
  



Pros 	
  	
  
•  Improve	
  spa4al	
  and	
  

temporal	
  consistency	
  
•  Can	
  be	
  performed	
  across	
  

mul4ple	
  variables	
  
•  Post	
  processing	
  method	
  is	
  

very	
  fast	
  computa4onally	
  

Cons	
  
•  Assump4on	
  of	
  sta4onarity	
  

–  However,	
  new	
  work	
  may	
  
make	
  this	
  assump4on	
  
unnecessary	
  

•  Ques4ons	
  about	
  what	
  may	
  
happen	
  if	
  real	
  observa4ons	
  
are	
  used	
  instead	
  of	
  analysis	
  
fields.	
  Real	
  observa4ons	
  can	
  
be	
  missing	
  data	
  and	
  this	
  
could	
  be	
  a	
  poten4al	
  issue	
  

ANEN	
  +	
  SS:	
  PROS	
  AND	
  CONS	
  

23 Spera4	
  et	
  al.	
  (under	
  review)	
  



SUMMARY	
  
•  AnEn	
  provides	
  a	
  computa4onally	
  efficient	
  means	
  of	
  
determining	
  an	
  ensemble	
  predic4on	
  	
  

•  Requires	
  a	
  historical	
  repository	
  of	
  corresponding	
  
forecasts	
  and	
  observa4ons	
  	
  

•  Op4mal	
  predictor	
  weigh4ng	
  further	
  improves	
  
forecast	
  skill	
  

•  The	
  AnEn	
  is	
  ‘embarrassingly	
  parallelizable’	
  

•  Combina4on	
  of	
  the	
  AnEn	
  +	
  Schaake	
  Shuffle	
  enables	
  
the	
  technique	
  to	
  be	
  applied	
  to	
  gridded	
  surfaces	
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Discussion	
  &	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ques4ons	
  

Please:	
  	
  
•  Fill	
  out	
  surveys	
  to	
  provide	
  feedback	
  for	
  further	
  

developing	
  this	
  learning	
  material	
  
•  Email	
  Laura	
  if	
  you	
  are	
  interested	
  in	
  an	
  addi4onal	
  

learning	
  session	
  to	
  cover	
  more	
  material	
  related	
  to	
  
the	
  AnEn	
  technique	
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