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1. Introduction

The Analog Ensemble (AnEn) technique was developed to generate a probability
distribution function (PDF) of an expected outcome from a current deterministic forecast
and corresponding sets of historical forecasts and verifying observations. A current short-
term deterministic forecast is compared to a history of past forecasts. The most similar past
forecasts are selected, and the corresponding observations are used to generate a bias
adjusted and well-calibrated short-term probabilistic forecast. The AnEn improves short-
term weather prediction accuracy, decreases real-time computational costs, and provides
spatial and temporal uncertainty estimation (Delle Monache et al. 2011; Delle Monache et
al. 2013; Alessasndrini et al. 2015; Zhang et al. 2015). The main requirement to build a
skillful AnEn is the availability of an historical set of past observations and predictions
from a “frozen” system, for at least several months spanning the seasons relevant for the
prediction of interest. However, the best performance is obtained with two years of data,
or more.

The technique has implications in physical science subject areas where: 1) single
deterministic predictions, past predictions, and their corresponding observations are
available; 2) it is necessary to have quantifiable and justifiable measures of uncertainty;
and 3) computational resources are precious. Currently in meteorology, this task is
accomplished by running a computationally expensive ensemble of simulations generated
using a numerical weather prediction (NWP) model. The AnEn technique provides an
alternative option for generating probabilistic forecasts without requiring the
computational expense of a NWP ensemble thus allowing scientists to choose between the
tradeoff of higher resolution modeling or ensemble modeling at a more coarse resolution.
Applications of the technique include but are not limited to: a range of weather parameters
(e.g., 10-m and 80-m wind speed, 2-m temperature, relative humidity), solar power
forecasting, wind power forecasting, air quality forecasting, tropical cyclone predictions,
and downscaling of parameters such as wind speed and precipitation.

2. Weather Analogs

What is an analog?
Analog-based methods are techniques in which a current state of the atmosphere is
compared with a repository of other states of the atmosphere to determine the most
similar scenario in the past (an analog) (Van den Dool, 1989; Hamill and Whitaker, 2006;
Delle Monache et al., 2011; Delle Monache et al., 2013). Lorenz (1969) stated that
analogues refer to “two states of the atmosphere which resemble each other rather closely”
and continued on to say, “Each state may then be looked upon as equivalent to the other

state plus a reasonably small ‘error’.” Traditionally, in meteorology, analogs have been used
primarily for pre- and post- processing of NWP forecasts (Hamill and Whitaker, 2006).

A Brief History of Analogs Related Research in the Weather Community
The concept of using analogs, similar past occurrences to current events, has been a part of
the meteorological community since the 1960’s. The following are a few key highlights of
analogs related research from core papers published over the years.
* Lorenz (1969) studied very large maps covering the Northern Hemisphere (200mb,
500mb, and 850mb surfaces at a 1003-point grid, twice per day, for a 5-year




dataset) in order to determine if analogs could provide insight into questions
regarding error growth in modeling the atmosphere. Lorenz obtained insight into
the growth of moderately small errors and extrapolated this information to the
growth of small errors. He did conclude that there were too many degrees of
freedom to obtain an accurate assessment because the study was able to find
mediocre analogs but lacked good, close analog examples. Lorenz (1969) estimated
that 140-year worth of upper-level data would be needed to find good analogs and
to truly understand the growth of small errors through the use of analogs.

* In 1994, van den Dool (1994) presented research on the length of a training dataset
required to produce skillful analog forecasts. In studying 500mb over the Northern
Hemisphere, he concluded that a significant size dataset of approximately 103° years
would be needed in order to find analogs that could match within current
observational error. The exception to this would be if researchers decreased the size
of the area over which analogs are sought. Searching for analogs over smaller areas
would decrease the size of the dataset size needed.

* Hamill and Whitaker (2006) presented the use of analogs as a tool for precipitation
calibration. This study focused on using one predictor at one specific time over a
specified tile (grid/raster). Hamill and Whitaker (2006) experimented with a series
of analog techniques using a 25-year reforecast dataset with a 15-member ensemble
in order to statistically correct precipitation forecasts.

* Inrelation to the previous concepts, the AnEn technique generates analogs in an
extremely localized sense compared to the previous concepts. Continue to Section 3
for further details.

* Panzieraetal. (2011), Liechti et al. (2013), and Foresti et al. (2015) studied the use
of analogues-based techniques to predict the occurrence of terrain induced
(orographic) precipitation. The studies utilized historical mesoscale situations and
rainfall fields to determine analogues. For ensuing hydrological runoff predictions,
Liechti et al. (2013) showed that discharge forecasts performed better with the use
of the analog based system than with the use of deterministic radar data. Panziera et
al. (2011) show that the use of historical analogues with a lead time of at least 1-h is
better than persistence and is better than the ensemble forecast model used up until
a lead time of 4-h is reached.

The above are several examples of different ways the concept of analogs has been
implemented or evolved over the years. There is a host of additional reading and
information available on this topic.

3. Analog Ensemble Technique Overview
What is the analog ensemble technique and how does it work?

Researchers at the National Center for Atmospheric Research (NCAR) pioneered initial
development and investigations of the point-based AnEn technique in 2010 (Delle Monache
et al.,, 2011; Delle Monache et al., 2013). The AnEn estimates the probability distribution of
a future value of the predictand variable, y, given a model prediction, f, and the repository
of past forecast and the observed real values x. This is represented as a probability,
P(y|xf). Figure 1 provides a pictorial representation of the method. At a given time and



location, y is the ensemble of observed values (orange squares), which are associated with
the most similar forecasts (blue squares) to the current deterministic forecast (black
square). Each forecast (black and blue squares) is composed of a multivariate vector of
geophysical variables, whereas the observations (green squares) are the geophysical
variable to be predicted (Delle Monache et al., 2013). The process

|

g N N N
| Past 42-h NWP Predictions
| |

\

&)

© 42-h NWP Prediction
| (deterministic) (deterministic)

-

)servations

00

@ ®

>0

< Training Period

42-h AnEn Prediction
robabilistic)

\

Figure 1: From Delle Monache et al. (2013), this figure provides a pictorial representation of the AnEn technique.
The black box indicates the current deterministic NWP. The blue boxes indicate the best matching (i.e. most
similar) historical forecasts (analogs) for the current prediction. The best match is determined by the similarity
metric described in Equation 1. Corresponding observations (green boxes) are gathered from the data record
(search space) and collectively, make up the ensemble of analogs (orange circles). Line numbers 1, 2, and 3
indicate the flow of the process from the current deterministic forecast to the discovery of the most similar past
set ups (1), to obtaining the corresponding observations (2), to gathering the observations to generate the
ensemble of analogs (3). In summary, using a single deterministic forecast from a NWP model, a set of past
predictions and corresponding observations, the AnEn generates a probabilistic distribution of the potential
future states of the atmosphere.

is repeated independently for each location in time and space. AnEn members consist of
verifying observations for each matching analog in a deterministic NWP output, which have
the benefit of being bias corrected and calibrated. The similarity metric shown in Equation
1 determines the best match between the current prediction and past predictions, where F;
is the forecast to be corrected at a given time t and specific location in space.

Ny t
w; 2
IFy, Ay ll = Za—l Z (Fierj — Aierej) Eqn1
i=1 i |j=—t

In Equation 1, F; is the forecast to be corrected at a given time t and specific station
location; A; is an analog forecast at time t’ before F; is issued and at the same location. N,
and w; are the number of predictors and their weights, respectively; oy, is the standard
deviation of the time series of past forecasts of a given variable at the same location and £ is
an integer equal to half the width of the time window over which the metric is computed.
Fi+4j and 4; ., ; are values of the prediction and the analog in the time window for a given
variable. This metric describes the quality of the analog chosen and is based upon the
similarity of the current forecast window to the past forecast time windows available in the
historical dataset. E.g., for a three-hour forecast the window would consist of three points,
t-3hr, t, and t+3hr.



4. How the AnEn Technique Developed and How it Differs from Previous Analog
Related Meteorological Research

How the AnEn Technique Developed

The AnEn technique was developed through a challenge Dr. Delle Monache faced in air
quality forecasting. Dr. Delle Monache had data from several air quality forecast models
and was trying to combine the Kalman filter correction with an ensemble of models in
order to see if he could improve the forecast skill of the short-term (1-2 day) ozone
forecasts. The Kalman filter was applied to each of the models available. The ensemble
output from before and after the correction was compared. Results showed that the
Kalman filter improved the ozone forecasts up to a certain threshold and then the
improvement would halt. The improvement would not continue for more rare events and,
in these cases, use of the Kalman filter would potentially even degrade the results. Dr. Delle
Monache identified that the issue lay in the fact that the Kalman filter gives higher weight
to more recent days. In other words, what occurs more recently is very important to the
Kalman filter. However, for the specific air quality parameter he was interested in
forecasting, the most recent days were not the best for ozone forecasting, particularly when
episodic high-concentration were measured, events that typically occur only for one to
three days in his data set. Dr. Delle Monache decided he needed to make a correction using
a day (any day) in the past that is most similar, where the model is making the same
mistake. And the AnEn technique was born!

How the AnEn Technique Differs from Previous Analog Related Meteorological Research
The AnEn differs from traditional analogs tested in the meteorological community in
several ways. Rather than a post-processing tool based on the mean of a NWP ensemble,
the point-based AnEn is generated using dynamics-based model predictions that are
sought independently at each location over a 3-point time window using a multivariate
metric (Lorenz, 1969; Delle Monache et al,, 2013; Vanvyve et al., 2015). With the AnEn
technique, an ensemble is generated from a current deterministic forecast and historical
repository of deterministic forecasts. Previously, analogs typically focused on using
analogs as a calibration tool for modeling. With the AnEn technique, the entirety of the
available historical repository is utilized in the search for most similar past occurrences
(Hamill and Whitaker, 2006; Delle Monache et al., 2013).

5. Overview of Current State of the Art with the AnEn Technique

Grid Based Implementation of the Analog Ensemble technique

Note: This work has been submitted and accepted but not yet published so references and full
descriptions are limited. Material for this description is extracted from a presentation given
by Mr. Simone Sperati at the National Center for Atmospheric Research (NCAR) in Summer
2016 and conversations with Mr. Sperati and his collaborators.

Researchers at the National Center for Atmospheric Research (NCAR) have applied the
aforementioned point-based AnEn technique described in Delle Monache et al. (2013)
directly to a gridded forecast product in order to use the AnEn to generate two-
dimensional (2D) forecast fields. Research results produced a choppy, disjointed field that
failed to improve via interpolation. Spatial and temporal consistency was not maintained



therefore scientists needed to determine a means of restoring spatio-temporal consistency.
This led researchers to the Schaake Shuffle (SS).

What is the Schaake Shuffle?

The SS was developed to reconstruct spatial and temporal variability in forecast variables
(Clark et al., 2004; Schefzik et al., 2013). Specifically, Clark et al. (2004), focused on
reconstructing downscaled precipitation and temperature fields for four river basins in the
United States (U.S.). The method is a post-processing step for forecast model output. In
Clark et al. (2004), ensemble members from a forecast model for a specific day are ranked,
data values for the parameters of interest (precipitation and temperature) from same dates
in the historical record are ranked, the ensemble members are matched to the ranked
historical data, and the ensemble members are reordered to match the ordering of the
historical data.

Figure 2 provides a clear demonstration of the difference in the output obtained by direct
use of the AnEn (top two panels) versus the combination of the AnEn + Schaake Shuffle
(AnEn + SS). Application of the SS to the field improved the spatial and temporal
consistency of the field. An analysis of forecast improvement compared output from the
calibrated Ensemble Prediction System (EPS), the AnEn + SS, and the AnEn + Schaake
Shuffle Control Run (CR). The calibrated EPS is output from the calibrated European Centre
for Medium-Range Weather Forecasting (ECMWF) EPS, ECMWF deterministic run is used
to generate the AnEn, and the AnEn CR is generated from the ECMWF EPS control run.
Deterministic and probabilistic metrics such as bias, centered root mean squared error
(CRMSE), continuous ranked probability score (CRPS), and rank histograms were used to
verify performance. In general, results showed that AnEn + SS performed better than the
calibrated EPS and AnEn CR until 36-48 hours out (Sperati, 2016).
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Figure 2: Depicts forecast fields generated using the AnEn (top two figures) and the AnEn + SS (bottom two
figures). This presents 10-m wind speed forecasts from each method and shows a distinct difference in the
spatial consistency of the combined AnEn + SS. (Source: Slide deck from the presentation by Mr. Sperati on 8 Apr
2016 at NCAR).

How does the AnEn + SS function?

The AnEn chooses the most similar past forecast and selects the corresponding verifying
observation. The Schaake Shuffle is applied to the ensemble of analogs where it reorders
the members resulting in an improvement of the spatial and temporal grid. The process is
stationary. The process generates a different realization of the same stochastic process. The
activity below provides a pictorial description of the combination of the AnEn and Schaake
Shuffle with a mock map, points, and data values.

Schaake Shuffle Activity
A pictorial description of the AnEn + SS with a mock map, points, and data ‘points/values.’
Description for three points:

e Time =00 UTC, lead time =0
e  Number of ensemble members = 4 ensemble members



P1 ,
/ Point 1 (P1):
* Determine the most similar past forecasts based on
é the similarity metric defined in Delle Monache et al.
(2013):
4 ensemble members = (5, 2, 1, 10)

* Take the corresponding observation for each
chosen forecast and identify the dates each observation
came from:

o Corresponding observations
Obsv = (4,2,9,10)
o Dates
Dates = (00Z 12 Dec, 00Z 1 Dec, 00Z 10 Jan, 00Z 10 Mar)
* Rank the past similar forecasts and the observations
Ranked past forecasts = (1,2,5,10)
Ranked (sorted) observations = (2,4,9,10)
* Determine the B function (Copula function)
o The B function is the connection between the ranked and unranked. This is
what is used to shuffle the positions.
B(Psorted obsv = (1’2:3:4)) = (2,14,3)
o The B function changes for every lead-time and every station.
* Now using this B function that links the position of the observation before sorting
and the position after sorting, re-sort the ensemble forecast members. The result
becomes:

(2,1, 10, 5)

o Position one (1) corresponds to the second (2"d) position. Position two (2)
corresponds to the first (1st) position. Position three (3) corresponds to the
fourth (4t) position in the vector. Position four (4) corresponds to the third
(3rd) position in the vector.

* This is executed at lead-time = 0 (analysis). Next, the same process will be executed
for lead-time = 1 and so on. However, the same dates (e.g. 12 Dec, 1 Dec, 10 Jan, 10
Mar) must not be used.

Moving to the 2nd point:

/P]'/P2 Note: (1) the selected dates have to remain the same for
ensuing lead times and (2) the same dates have to be the
é é same across multiple locations.
* Dates

Dates = (00Z 12 Dec, 00Z 1 Dec, 00Z 10 Jan, 00Z 10 Mar)
* Same past forecast dates (could also call this
members) but different forecast values and different
observations because this is a different location
4 ensemble members =(6,1,2,9)
Corresponding Observations = (5,3,8,11)




4 ensemble memberssoreda = (1,2,6,9)
Sorted: Observationssorted =(3,5,8,11)

Establish Copula function (B):
B(Psorted obsv = (1’2:3:4)) = (2,14,3)
* Use the B function to re-sort ensemble of past forecasts. The result becomes:

(1,2,6)9)

* This would continue for ensuing lead times

Moving to the 314 point:

/Pl /PZ/P3 * The same method continues. Try it out for yourself!

584

Pros and cons of the Schaake Shuffle include:
Pros:

* Improve spatial and temporal consistency

* Generic approach: Generalizability across different domains. Clark et al. (2004)
presents the material in the context of precipitation and temperature forecasts but
this has applications other fields as well (i.e., stream flow modeling within
watersheds, data assimilation of snow)

* The method can be performed across multiple variables

* The SS post processing method is very fast computationally because the Schaake
Shuffle executes a series of vector manipulations which can be executed rapidly by
computers

Cons:

* Assumption of stationarity. Within the context of using the AnEn + Schaake Shuffle,
the stationarity assumption means that dates selected in the historical forecast
period must remain the same for (a) subsequent lead times and (b) across multiple
locations.

* The AnEn + SS adds a post processing step to the AnEn technique in order to use the
AnEn to generate gridded fields. (However, note the previously mentioned positive
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with respect to the computational speed of the SS. Therefore, for completeness, we
acknowledge that the SS adds a post-processing step however the computational
cost is very small and this is simply mentioned here for completeness)

In summary, the implementation of the SS has improved the spatial and temporal

consistency for a direct application of the point-based similarity metric described in Delle
Monache et al. (2013) to a grid based forecast.
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APPENDIX

1. Acronyms

1D one-dimensional

2D two-dimensional

AnEn Analog Ensemble

ANN Artificial Neural Network

CR Control Run

CRMSE Centered Root Mean Square Error

CRPS Continuous Ranked Probability Score
ECMWF European Centre for Medium-Range Weather Forecasts
NCAR National Center for Atmospheric Research
NWP Numerical Weather Prediction

SS Schaake Shuffle
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