The WRF-Hydro Modeling System: Implementation and Calibration Approaches

May 2015

WRF-Hydro Development Team

Model Evaluation: Multi-scale model analysis over intensive observational testbeds

3 legs of the model 'fidelity' stool:

- 1. Temporal Domain:
 - Assessing high and low frequency behavior in model simulated flow responses
 - Diagnosing extremes in hydrological models

• 2. Spatial Domain:

- Capturing patterns of heterogeneity and organization in hydrologic states (GW, snow, S.M.)
- Representing changes in runoff productivity across climate-topographic gradients
- Reproducing the appropriate upscale behavior of runoff and streamflow from headwater to large river systems

• 3. Multi-variate model characterization:

- Energy and Radiation fluxes
- Inundation
- Groundwater-critical zone interactions
- Shallow soil moisture

Suggested WRF-Hydro Implementation Steps

This procedure will help isolate problems which may otherwise be difficult and/or time-consuming to diagnose in many implementations:

- 1. Derive and QC all inputs...(time mean fields, accumulation fields, screen for anomalies...)
- 2. Conduct offline simulations...
- 3. Start with 'idealized' forcing (FORC_TYP = 4)
- 4. Run WRF_Hydro with no routing
- 5. Then sequentially add routing components:
 - 1. Sfc/subsfc
 - 2. GW/baseflow
 - 3. Channel flow
 - 4. Reservoirs
- 6. If all above works, then non-forcing input grids and components are functional (though not guaranteed accurate!)
- 7. Do offline runs with FORC_TYP set to data input format
- 8. After all that and calibration, then run coupled WRF-Hydro

Integrated Land/Hydrology Model Evaluation & Calibration Steps (1)

This procedure is incremental to help isolate key sensitivities and maximize opportunity for obtaining 'right answers for the right reasons':

- 1. Land model only long term water budget (local, gridded and basin averaged/integrated as appropriate:
 - 1. Annual and seasonal runoff vs. observed flows
 - 2. Land atmosphere fluxes
 - 3. Groundwater storage/soil moisture (primarily correlative analysis)
 - 4. Snowpack
- 2. Calibration Methods:
 - 1. SCE, PEST, Manual
- 3. Key is to obtain a reasonable annual and seasonal water budget partitioning that properly reflects climate forcing

Integrated Land/Hydrology Model Evaluation & Calibration Steps (2) This procedure is incremental to help isolate key sensitivities and maximize

opportunity for obtaining 'right answers for the right reasons':

- 1. Land model plus 'terrain routing' (and bucket model) and evaluate against long term water budget (local, gridded and basin averaged/integrated as appropriate):
 - Annual and seasonal runoff vs. observed flows
 - Land atmosphere fluxes
 - Groundwater storage/soil moisture (primarily correlative analysis)
 - Snowpack
- 2. Calibration Methods:
 - 1. SCE, PEST, Manual
- Key is to re-tune land model and terrestrial routing parameters to maintain a reasonable annual and seasonal water budget partitioning that properly reflects climate forcing.

Integrated Land/Hydrology Model Evaluation & Calibration Steps (2)

- NoahMP yielding markedly better snowpack estimates and runoff simulations than original Noah in headwaters
- Routed flows in WRF-Hydro (uncalibrated) producing improved runoff with respect to observations than simply land model only. Suggests re-infiltration and en route ET 'losses' are important.

Integrated Land/Hydrology Model Evaluation & Calibration Steps (3)

This procedure is incremental to help isolate key sensitivities and maximize opportunity for obtaining 'right answers for the right reasons':

- 1. Streamflow calibration with active channel routing: (can be done with full system or just prescribed 'channel inflows/channel model only':
 - 1. Continuous timeseries analysis
 - 2. N-S, RMSE, Bias, MAE
 - 3. Flow duration curve (total integral of area between observed and modeled flow duration curves)
 - 4. Peak flows
 - 5. Flood wave celerity
- 2. Calibration Methods:
 - 1. SCE, PEST, Manual
- 3. Goal is to build upon prior 'land routing' calibration for water budget and focus here on flood wave propagation

Integrated Land/Hydrology Model Evaluation & Calibration Steps (3)

R-script

Integrated Land/Hydrology Model Evaluation & Calibration Final Comments

- Paradigm is shifting from model calibration to model evaluation and diagnosis
- With process-based hydrologic models there are multiple evaluation metrics (beyond streamflow) that can be brought to bear
- Data requirements increase correspondingly and 'PUB' is still fraught with uncertainties
- Need a structured approach to isolate primary sources of uncertainty, sensitivity and opportunity for calibration
- Will still be some classic calibration artifacts in parameter estimates