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Outline:

* Basic Concepts
* Conceptualization of WRF-Hydro
* Model Architecture & Requirements
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asic Concepts:

* Linking the column structure of land surface
models with the ‘distributed’ structure of
hydrological models in a flexible, HPC
architecture....

Unified Noah/OSU Land Surface Model

6 Basic Soil Water and Runoff Terms
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Conceptualization of WRF-Hydro:

 Atmospheric coupling perspective and serving
the WRF research and forecasting and CESM
communities

* Oriented towards existing NCAR-supported
community models, but expanding:

— Not fully genericized coupling which has pros/
cons associated...

— Also aimed at cluster & HPC architectures
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WRF-Hydro v3.0 Physics Components:

e Goal...
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Unified Noah/OSU Land Surface Model
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WRF-Hydro v3.0 Physics Components:
* Multi-scale aggregation/disaggregation:

100m Terrain 1 km Terrain

Current ‘Regridding’
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WRF-Hydro v3.0 Physics Components:

* Pixel-to-pixel routing
* Steepest descent or 2d
» Diffusive wave/

e Surface routing:

Infiltration excess
available for hydraulic routing

backwater permitting
\ A * Explicit solution
y 5  Ponded water (surface
V 44 e head) is fully-
- Y "\ interactive with land
y 4 e

e Sub-grid variability of
ponded water on
routing grid is
preserved between
land model calls
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Adapted from:
Julian et al, 1995 — CASC2D, GSSHA




WRF-Hydro v3.0 Physics Components:

e Subsurface routing:

° i ¢ '
Surface Exfiltration from Qua5| Steady state, Boussmesq
Saturated Soil Columns saturated flow model

e Exfiltration from fully-saturated
soil columns

e Anisotropy in vertical and
horizontal Ksat

e No ‘perched’ flow

Iateral oV e o e Soil depth is uniform

Saturated Soil Layers

e C(Critical initialization value: water

Adapted from: table depth
Wigmosta et. al, 1994
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Ammer domain, 100 m
WRF-Hydro-Static

WRF-Hydro v3.0 Physics Components

sssss

Subsurface routing:
— 2d groundwater model

— Coupled to bottom of
LSM soil column
through Darcy-flux
parameterization

— Independent hydraulic
characteristics vs. soil
column

— Full coupling to gridded
channel model through
assumed channel

depth and channel
head Surface ponded water from coupled groundwater in WRF-Hydro

B. Fersch, KIT, Germany

— Detailed
representation of
wetlands
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WRF-Hydro v3.0 Physics Components:
 Channel routing: Gridded vs. Reach-based

\_\‘ /
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oo .
o = One-way ov. flow into channel
- = No sub-surface losses
* ‘Infinite’ ch | depth
. Sgrface water on chann.el n I(r:::n:,;:::k ﬂz\r:v)
grid cells get deposited in
channel as 'lateral inflow’ W

%%
%
o Flow

No B

e Solution Methods:

— Gridded: 1-d diffusive wave: fully-unsteady,
explicit, finite-difference
— Reach: Muskingam, Muskingam-Cunge
(much faster)
* Parameters:

— A priori function of Strahler order
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— Trapezoidal channel (bottom width, side
slope)







WRF-Hydro v3.0 Physics Components:

* Optional conceptual ‘Bucket” models:

— Used for continuous (vs. event) prediction
— Simple pass-through or 2-parameter exponential model
— Bucket discharge gets distributed to channel network
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WRF-Hydro v3.0 Physics Components:

e Optional lake/reservoir model:

— Level-pool routing (i.e. no lagging of wave or gradient in pool
elevation)

— Inflows via channel and overland flow
— Discharge via orifice and spillway to channel network

— Parameters: lake and orifice elevations, max. pool elevation,
spillway and orifice characteristics; specified via parameter
table

— Active management can be added via an operations table
— Presentlv no seepage or evaporative loss functions
——p Inflow Nimax A R Y
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Implementing lakes and reservoirs
in WRF-Hydro

‘What to capture:
Current View
ST L)

Legend

B[¥] Default Rackground
World Coastlines

US. County Outlines

B[v] Point Data

Blv] Point Data - Point D...

1. Visualization
of lake
Impacts
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WRF-Hydro Architecture
Description:

Gridded . ° 1
Meteorological Analyses/Re-analyses/ Weathf:r .and Climate M O d e | p h ys I CS
Nowcasts/Forecasts Prediction Models com ponents.“ :

One-way coupling Two-way coupling
* Multi-scale
Conservative regridding and downscaling tools | components....
— Rectilinear
Column Subsurface Overland & Water regrldd I ng
Channel Management 3 .
Surface R Flow Modules — ESMF regridding

Routing
Modules Modules Modules

Integrated Hydrological Models

— Downscaling
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Architecture Description: Basic Concepts

 Modes of operation..

One- way (‘ uncoupled ) T2 1-way vs. 2-way
i G e Model forcing and
| feedback
1= components:

* Forcings: T, Press,
Precip., wind, radiation,
humidity, BGC-scalars

* Feedbacks: Sensible,
latent, momentum,
radiation, BGC-scalars
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‘WRF-Hydro’ Software Features:

 Modularized F90 (and later) and integrated in the
WRF ARW & NMM and CESM systems and NASA-LIS

e Coupling options are specified at compilation and
WRE-Hydro is compiled as a new library in WRF

e Physics options are switch-activated though a
namelist/configuration file

e Options to output sub-grid state and flux fields to
standards-based netcdf point and grid files

e Fully-parallelized to HPC systems with ‘good’ scaling
performance

e Ported to Intel, IBM and MacOS systems and a
variety of compilers
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Wei Yu (RAL) —lead engineer



Thank you!

D. Gochis, gochis@ucar.edu, W. Yu, K. Sampson, D. Yates

WRF-Hydro: http://www.ral.ucar.edu/projects/wrf hydro/

Funding provided by:
NSF, NOAA-OHD, NASA-IDS, DOE-ESM
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