WRF-Hydro: A hydrological modeling extension package for the Weather Research and Forecasting System

D. Gochis, W. Yu, K. Sampson, A. Dugger, J. McCreight, , D. Yates, K. Ikeda

National Center for Atmospheric Research

WRF-Hydro Component Overview

May 2015

Outline:

- Basic Concepts
- Conceptualization of WRF-Hydro
- Model Architecture & Requirements

Basic Concepts:

 Linking the column structure of land surface models with the 'distributed' structure of hydrological models in a flexible, HPC architecture....

Conceptualization of WRF-Hydro:

 Atmospheric coupling perspective and serving the WRF research and forecasting and CESM communities

- Oriented towards existing NCAR-supported community models, but expanding:
 - Not fully genericized coupling which has pros/ cons associated...
 - Also aimed at cluster & HPC architectures

Goal...

- Current Land Surface Models:
 - Column physics & land-atmosphere exchange

Noah LSM v3.5 & Noah-MP

Multi-scale aggregation/disaggregation:

Terrain slope (0-45 deg)

Surface routing:

- Pixel-to-pixel routing
 - Steepest descent or 2d
 - Diffusive wave/ backwater permitting
 - Explicit solution
- Ponded water (surface head) is fullyinteractive with land model
- Sub-grid variability of ponded water on routing grid is preserved between land model calls

Subsurface routing:

Adapted from: Wigmosta et. al, 1994

- Quasi steady-state, Boussinesq saturated flow model
- Exfiltration from fully-saturated soil columns
- Anisotropy in vertical and horizontal Ksat
- No 'perched' flow
- Soil depth is uniform
- Critical initialization value: water table depth

Subsurface routing:

- 2d groundwater model
- Coupled to bottom of LSM soil column through Darcy-flux parameterization
- Independent hydraulic characteristics vs. soil column
- Full coupling to gridded channel model through assumed channel depth and channel head
- Detailed representation of wetlands

Surface ponded water from coupled groundwater in WRF-Hydro B. Fersch, KIT, Germany

Channel routing: Gridded vs. Reach-based

- Solution Methods:
 - Gridded: 1-d diffusive wave: fully-unsteady, explicit, finite-difference
 - Reach: Muskingam, Muskingam-Cunge (much faster)
- Parameters:
 - A priori function of Strahler order
 - Trapezoidal channel (bottom width, side slope)

- Optional conceptual 'Bucket' models:
 - Used for continuous (vs. event) prediction
 - Simple pass-through or 2-parameter exponential model
 - Bucket discharge gets distributed to channel network

- Optional lake/reservoir model:
 - Level-pool routing (i.e. no lagging of wave or gradient in pool elevation)
 - Inflows via channel and overland flow
 - Discharge via orifice and spillway to channel network
 - Parameters: lake and orifice elevations, max. pool elevation, spillway and orifice characteristics; specified via parameter table
 - Active management can be added via an operations table
 - Presently no seepage or evaporative loss functions

Implementing lakes and reservoirs in WRF-Hydro

1. Visualization of lake impacts

WRF-Hydro Architecture Description:

Model physics components....

- Multi-scale components....
 - Rectilinear regridding
 - ESMF regridding
 - Downscaling

Architecture Description: Basic Concepts

Two-way ('coupled') ↔

- Modes of operation..1-way vs. 2-way
- Model forcing and feedback components:
 - Forcings: T, Press,
 Precip., wind, radiation,
 humidity, BGC-scalars
 - Feedbacks: Sensible, latent, momentum, radiation, BGC-scalars

'WRF-Hydro' Software Features:

- Modularized F90 (and later) and integrated in the WRF ARW & NMM and CESM systems and NASA-LIS
- Coupling options are specified at compilation and WRF-Hydro is compiled as a new library in WRF
- Physics options are switch-activated though a namelist/configuration file
- Options to output sub-grid state and flux fields to standards-based netcdf point and grid files
- Fully-parallelized to HPC systems with 'good' scaling performance
- Ported to Intel, IBM and MacOS systems and a variety of compilers

Thank you!

D. Gochis, <u>gochis@ucar.edu</u>, W. Yu, K. Sampson, D. Yates WRF-Hydro: http://www.ral.ucar.edu/projects/wrf_hydro/

Funding provided by:
NSF, NOAA-OHD, NASA-IDS, DOE-ESM