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« Some memories of my early grad student years starting
in 1981

« Some highlights of my PSU Numerical Weather
Prediction (NWP) Group activities over the last ten years

— NWP for Air Quality Modeling

— Military-Defense-Aviation NWP Systems
« Army, Marines, DTRA, NOAA

— Basic and Applied Research
« Stable Boundary Layer, Waves and AT&D

 Model Ensembles

— Advanced Data Assimilation
— Uncertainty Quantification
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A Numerical Study of Appalachian Cold-Air Damming and Coastal Frontogenesis

STAUFFER AND WARNER

DAVID R. STAUFFER AND THOMAS T. WARNER
Department of Meteorology, The Pennsylvania State University, University Park, PA 16802
(Manuscript received 28 March 1986, in final form 9 October 1986)

ABSTRACT
A 24-h numerical stmulauen is used to study features of the wedge-shaped pressure ridge aud the ooasml
fmm, which occur in eastern United States during winter md often CAVSE § t 1 errors in
models. Specifically, Lhe Penn State/National Center for A ) Model (MM) is used
asadi ic tool to igate the 1 of these ph iated with the A

ice-storm of [3~[4 January 1980
The MM, which used 15 vertical levels (R below 800 mb), a 50-km, horizontal mesh size, and a multi-fevel
boundary-layer pammetenzauon produced a better foupcast of boundary-layer temperature and sea-level pressure

than did the Nati I Center'’s model for th:s case-study penod To the east of the

ins, the MM maintained the wedge-ridge pattern and produced the low-level, herly flow which is
characteristic of !he dammmg regwn The MM also pmwdcd rcasonablc vertical profiles of temperature and
wind, including a low-i parallel jet which is commonly observed along mountain ridges during
cold-air darmmng However, dnpu/e the mod.el s fairly sophisticated surface energy equation and modesate
spatial ion, the low-1 lation was still 1-5°C t0o warm in some areas to the east of

the mountains.

The reoderate horizontal and vertical resolution did allow the MM to develop the coastal front which appeared
in the Chesapeake Bay-New Jersey area by the end of the 24-h study period, Despite the srall-scale nature of
a coaslai ftcm., synopuc and mesoalpha-scale forcing in the model created a mhshc, coastal baroclinic zone.
The s gradient and 31 20ne bly with surface obser-
vations. The simulated coastal front, separating easterly maritime air from the cold northerly flow inland,
diminished in strength with height and disappeared by 940 mb, In the damming region, observations suggested
and mode) results showed an “extended coasta front™: a sloping inversion separating the trapped surface-based
cald air from the warm oashore flow above. This feature appears to be at least partially responsible for the low-
fevel jet.

Model d

j showed the strongly sheared, three-dimensional character of the flow
within the damming region. These model results and observations indicate that a relatively larpe number of
model layers would be required below ~800 mb in order to adeguately model the thermal and wind field
structures.
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1. Introduction

The veteran forecaster raises his brow whenever a
strong surface anticyclone, tracking eastward toward
New England, extends southward along the eastern
slopes of the Appalachians as an inverted ridge in the
sea-level pressure (SLP), This familiar “wedge ridge,”
the result of cold-air “damming” by the mountains, is
often the harbinger of hazardous winter weather east
of the Appalachian Mountain chain.

Despite the sufficient horizontal grid spacing to re-
solve the wedge ridge in current operational models,
the incomplete treatment of the boundary-layer pro-
cesses generally contributes to poor mass-field and
wind-field forecasts in the damming region, while fore-
cast errors are normally much smaller elsewhere on
the model domain (Richwien, 1980; Bosart, 1981;
Forbes et al., 1987). East of the mountains, boundary-
layer temperatures are often predicted to be too warm,
while surface pressures are forecast to fall too rapidly.

© 1987 American Meteorological Saciety

This wedge-shaped pressure ridge is often associated
with yet another forecast challenge existing along cer-
tain parts of the east coast of the United States. Bosart
et al. (1972) and Bosart (1975) have studied a shallow,
pseudo-warm or stationary “coastal front” in New
England. The observation that coastal fronts tend to
be oriented more paraliel to the terrain contours than
1o the coastline may support the hypothesis that cold-
air damming enhances their intensity (Richwien, 1980).
Furthermore, Bosart (1981), among others, indicates
that this cold-air pressure ridge also favors coastal cy-
clogenesis.

This paper discusses the results of 2 numerical sim-
ulation, which used a mesoscale model (MM) with so-
phisticated boundary-layer physics and moderate hor-
izontal and vertical resolution, to investigate the me-
soscale detail of the wedge ridge and coastal front. The
case studied is the Appalachian freezing-rain event of
13-14 January 1980, recently documented by Forbes
et al. (1987).
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FIG. 17b. As in Fig. 162 but from 24-h forecast verifying
at 1200 UTC 14 January 1980.

the wind-field forecast at 1200 UTC 14 January verifies
reasonably well against the available data, no wind data
were available at this time above the surface at GSO.
The predicted surface wind for this time at GSO com-
pares favorably with the observed 6 m s~ wind from
the north-northéast. Observed low-level winds at IAD
and AHN at this time were 3-5 m s~* from the north-

east.

The dynamical arguments of Schwerdtfeger men-
tioned earlier, that attempt to explain the existence of -
terrain-induced jets in terms of geostrophic consider~
ations, can be useful here. That is, the presence of the
extended coastal-front inversion in the damming region

_ may accelerate the air toward the south, along the east-

ern Appalachian slope. Perhaps the underestimation
of the inversion strength by the model may explain

_why the simulated low-level jet appeared 4-8 h after

it was observed. Geostrophic forcing would be weaker
and therefore more time would be required for the
model to develop the jet. Forbes et al. (1987) state that
the observations in this case were generally supportive
of Schwerdtfeger’s arguments.

Figure 19 shows a back trajectory of an air parcel
which was embedded in the jet core at 950 mb at 24
h in the numerical simulation. This trajectory and those
presented later were calculated from the three-dimen-
sional wind fields defined at 15-min intervals by the
24-h model simulation. The dark dots in Fig. 19 show
the parcel’s position at 2-h intervals with the total wind
T, ageostrophic wind 4 and geostrophic wind G plotted
every 4 h. The pressure level and pressure height of the
parcel above the surface are in millibars and enclosed
in parentheses. The parcel’s mean speed for each 2-h
interval is in meters per second and is encircled.

The parcel, which originated in the low levels over
the ocean surface, initially accelerates and then turns
westward after 8 h (2000 UTC 13 January). Near the
coast, its motion is largely geostrophic. At this time
(0200 UTC 14 January), the coastal front has not de-
veloped yet; but the parcel still rises and decelerates as
it moves further inland over the cold air. As it ascends,
it passes through different pressure-gradient regimes.
After 18 h, owing to the stability of the air, the parcel
is deflected to the left (south) as predicted by Schwerdt-
feger’s argument. The local pressure gradient force is
directed normal to and away from the mountains.
During the next few hours, Coriolis effects become im-
portant enough to support the geostrophic-type flow
of the northerly jet. An analysis of other trajectories in
the region of the jet at 24 h produced similar results.
Examination of the low-level wind simulation in the
region of this trajectory shows reasonable agreement
with available observations. Therefore, its general
characteristics should be representative of the true at-
mosphere.

d. The coastal front

The initial surface-layer temperature field at 1200
UTC 13 January was shown in Fig. 7 to have isotherms
oriented nearly east—west in the coastal states; little or
no low-level convergence existed in the initial model
winds at this time along the coast. By 0400 UTC 14
January, the model produced a weak convergence zone
in the Chesapeake Bay-New Jersey area (Fig. 10),
where the coastal front was just beginning 1o develop.
By 1200 UTC, a mesoscale temperature gradient and
a strong convergence zone were well developed in this
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PENNSTATE Current and Recent NWP and Process Studies

@ for Air Quality Applications...

* Alaska PM2.5: EPA and Alaska
Department of Environmental
Conservation (ADEC), Gaudet

» California Ozone and PM2.5: Bay Area Air

Quality Management District (BAAQMD),
Deng and Rogers
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Alaska Winter Case — PM2.5

(et ) e o

10 80 30 40 60 80 T 80 P 100 110 10 130 14 104 1&3 170 180 LBD 300

Alaska Domains:

12 km: Synoptic scale 401 x 301 At=24s
4 km: Central AK region 202 x 202 At= 8s
1.33 km: Tanana Basin 202 x 202 At= 4s

39 vertical levels, to 4 m grid spacing near surface

1860

1800

1860

1600

1360

1200

1060

00

7E0

800

4650

300

160



PENNSTATE

E California Summer Case - Ozone
WRF Streamlines with Terrain Shaded Schematic Diagram of Typical
Daytime: 0000UTC 30 July 2000 Regional Daytime Flow
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Multiscale FDDA — Analysis nudging
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% California Summer Case - Ozone

WRF Streamlines with Terrain Shaded
Nighttime: 1200UTC 01 Aug 2000

Multiscale FDDA — Analysis nudging
on 36- and 12-km domains, obs
nudging on 12- and 4-km domains

Schematic Diagram of Typical
Regional Nighttime Flow
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U.S. Army MMS-Profiler Nowcast
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Smiths Detection
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AN/TMQ-52 MMS-Profiler Overview smtths

- Provides MET support for artillery

— Collect meteorological data from satellite, upper air radio soundings,
and local surface conditions

— Use meteorological data as input to weather forecast model to
provide a snapshot of battlefield weather conditions

— Communicate with fire support via tactical voice/ data radios.

Smiths Detection



PENNSTAJRapldIy Relocatable Nowcast-Prediction
w System (RRNPS) for U.S. Army MMS-Profiler

*Comprised of MET sensors and a mesoscale
modeling system running locally on the
battlefield with continuous data assimilation to
provide timely and accurate MET for use in
correcting standard firing tables to accurately
engage targets throughout the battlespace.

*Fielded to active Army units in early 2005,
approved for full rate production in June 2005
with full 108-unit production cycle completed in
2010.

*Provides Local and Target Area ARTY MET
messages every 15-30 minutes

*Provides as a minimum the MET Parameters
— Temperature, Humidity, Pressure
— Wind Speed, Wind Direction

— Target Area: Ceiling, Visibility, Precip Rate,
Precip Type



PENNSTAT : th
s Army MMS-Profiler system with its crew,

@  armed and wearing desert camouflage
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USMC METMF(R) NEXGEN

Meteorological Mobile Facility Replacement - Next Generation
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.. Military Defense: Defense Threat @
mii Reduction Agency (DTRA)

In House Relocatable On-demand N

Forecast System (ROFS)
« Based on full-physics MM5/WRF

 Flexible or scheduled start and end
times

 User-defined domains, sizes and
horizontal/vertical resolutions

* Runs in real time and historical event
modes

* Runs on massively parallel computing
platforms (MPI)

» Continuous multi-scale four-
dimensional data assimilation (FDDA)
capability for improved model
initialization (dynamic initialization)
—————
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Super Bowl XLI 2007 T
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Denver Democratic =
National Convention 2008
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Vancouver Winter Olympics 2010 ¥
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&
Interim Progress Report
on
A NextGen Airport Forecast System
(NGAFS)
Cooperative Agreement
between

NOAA/NWS/OST and Penn State Univ.

Silver Spring, MD
20 July 2011

David R. Stauffer, P.l., PSU
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"ENN%TE NGAFS Motivation

Objective: Build, test and evaluate a local-data assimilating, high-
resolution numerical / statistical airport forecast system to dynamically
downscale operational numerical products, yielding more detailed and
accurate aviation forecast parameters.

' JFinrport

27



PENN%T Cooperative Approach

* Penn State will build a numerical modeling system
with overall characteristics similar to the experimental
HRRR model under development at NOAA/OAR/GSD.

- ARW dynamical core; RUC-like physics.

- ICs and LBCs from RR; RUC LSM at lower boundary.

- 1-h cycling of 6-h to 12-h forecasts.

- Partial-cycling data assimilation of local observations.

- Highest grid resolution ~ 1 km.

« NOAA/NWS/OST/MDL will use Penn State ARW products
as an input to a LAMP-like system to forecast aviation-
sensitive Wx parameters in the vicinity of major airports.

- Hourly observations and analyses.
- GFS/LAMP-based MOS updated with PSU ARW 1-km forecasts.




PENN%T PSU Realtime Systems

*Central PA Centered WRF
*http://www.meteo.psu.edu/~wrfrt/

‘NGAFS WRF
*http://www.meteo.psu.edu/~ngafs/

*Stable Boundary Layer WRF
*http://www.meteo.psu.edu/~wrfrt1/
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July 2011

Improved Understanding
and Prediction of the
Stable Boundary Layer to
Better Predict the Fate of
Airborne Toxics Released
by WMDs
HDTRA1-10-0033

DEFENSE THREAT REDUCTION AGENCY JOINT SCIENCE AND TECHNOLOGY OFFICE CHEMICAL AND BIOLOGICAL DEFENSE

David R. Stauffer, PI
Professor, Penn State University
Defense Threat Reduction Agency (DTRA)




« To understand and predict the structure and variability of
stable boundary layers (SBLs) to improve predictions of
atmospheric transport and dispersion (AT&D) of airborne
toxic materials from accidents or WMDs.
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Combined modeling and observation study 4
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WRF-ARW Model Configuration

WREF uses nested domains with * i R
12-, 4-, 1.33, and 0.44-km # |
horizontal grid spacing. Sub-
kilometer horizontal resolution to
resolve fine-scale terrain important
for shallow SBL flows and AT&D.

68 m

p, w, TKE 47 m
* Very high vertical resolution near the surface to
resolve shallow SBL and gravity-driven slope
33m flows (10 layers in lowest 50 m AGL).

24m * 12-hour forecasts from 00 to 12 UTC (7PM to
_________________________ 17m 7/AM EST)

coooooceeceo-o--------- 0o Model output, saved every 12 minutes, is used to
SCCCEECTETEECC PN represent submeso fluctuations in trajectories
----------------------- E‘gm and AT&D predictions
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WRF MYJMod PBL Physics Model
and Observed Surface Winds

3 m filtered obs

3 m filtered moedel

3 m raw cbs

3 m raw model

P
T
m
E
~—
o
L3
o
o
)
)
£
=

lllllllllllllllllllllllllllll
lllllllIlllllllllllllllllllll




Conceptual Model of Nocturnal Flow Regimes

For Valleys with Weak Down-valley Terrain Slopes

55 ThetaXwindAlITKE boundary layer diagonal cross-section - interpolated to terrain
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Internal waves and other
submeso motions cause
intermittent turbulence near
the surface

Shallow gravity-driven
drainage flow overrides
coldest air on valley floor,
gradually filling Nittany Valley




Wave structures are captured by the obseryving
network (Josh Hoover, Scott Richardson)

Wave-like pattern in wind
speed and vertical motion
Tower Temperature (C) located at Site 9

Wind Speed (m/s)
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Positive
associated with the passage of the wave
crest and the underlying rotor. As the
wave propagates upstream, the rotor-
induced circulation causes the surface

temperature fluctuation is

UNCLASSIFIED

PENNSTATE

Effect of Internal Gravity Waves on the Stable@
Boundary Layer (SBL) (Astrid Suarez, Brian Reen)
RS B

a)Observed Site 9 1-min Averaged Tower Data
9 T T T T T T T T T T T

—m
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—9m

B 8

b) Modeled Site 9 1

-min Instantaneous

Ooytput

T AUK 2n
AU 5n

cold pool to erode between 0600-0630 ! [
UTC and brings higher potential )l —
temperature air to the surface. il | M
WRF model produces 1 i
structures that are consistent 0 P S T
. . 12 0 1 [ 7 8 g 10 1 12
* Location of Site 9 with observations Tine(h)
~a) 0536 UTC ‘ ~ b) 0600 UTC -
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Vertical Velocity W

<4—» 10 km scale

Dataset: CTRL RIP: w zoom Init: 0000 UTC Thu 14 Apr 11
Fest: 0.00 h Valid: 0000 UTC Thu 14 Apr 11 (1800 MDT Wed 13 Apr 11)
Vertical velocity XY 2.0,148.0 to 148.0, 2.0
Potential temperature XY 2.0,14B.0 to 14B.0, 2.0
8.0 T T T T T §TTT T L Sl Ty ems
E i %
P o g
7.0 -— 3 { 0
{184 516} {518 ' “
80 P : 4 “
- ) ! %0
—{aiz}+ 31z}31z} -
——— ___r_ b g 0
5.0 -
2 | 1 i £
7 308 : ~{30B— : 308 "
2 1 :
40 : t °
£ {304} —— =304 3
3 HEy : L._,—-{- : 10
E : i 20
30 Eo~ T —faoo} l““' : o ]
T : 2 a
Amfs =Thmnor 20 w
20 = 2? 0
— 288 2R84 o0
10— : 5 7
B I I -
1 - : 0
s 1
[ 1 90
(Y QLI TEETETE FFETERTETE FTNETETEEY AUNTETEE . . FERUTET FUTE. ITU FETEETETEY FERTETRET f
Q 10 20 40 50 "0 ] o0
NW Distgnce (km) SE
CONTOURS: UNIT 28300 HIGH= 362.00 ERVAL 1.0000
Medel Info: V3.3 N MYJ PBL WSM|3class Ther—Diff 44 . 43 levels, 3 sec

RRTM SW: Dudhia DJFF. simple KM: 2D Smapor

Allegheny Mts. Bald Eagle Mt. Tussey Ridge



A\ BPA diwy > Hovmoller Diagram for Vertical Motion
»!,, ¢ B 8 \ ‘;\,‘

()
</




UNCLASSIFIED PENNSTATE
i)

5-m Releases at Site 9
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SCIPUFF Surface Dosage and E
Concentration of 5-m Release at Site 9

a) SFC dosage 0500 0700 UTC s b) SFC dosage 0600 0800 UTC s c) SFC dosage 0700-0900 UTC
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" . 1.1 5 1.1 ‘ g
E 2 E
0.9 B 0.9 B 0.9 B
B 5 g H = & 1.00E-09
§, 0.7 = =207 g é 0.7 = 100E 10
e Z b i s z 1.00E-11
205 205 245 - 1.00E-12
T T T 1.00E-13
0.3 0.3 03 1.00E-14
1.00E-15
0.1 0.1 0.1
278.0 -78.0 -78.0 779 779 77.9 -78.0 -78.0 -78.0 -78.0 -77.9 -77.9 78.0 -78.0 -78.0 779 -77.9 -77.9
408 408 407 40.7 40.7 40.7 40.8 40.7 40.7 40.7 40.7 40.6 40.8 407 40.7 407 40.7 40.6
Longitude, Latitude Longitude, Latitude Longitude, Latitude

UNCLASSIFIED



@ s0 e " 80 o 100
MAXIMUM VECTOR. 7.1 m .
CONTOURS: UNITS-g kg ' LOW- 0 100DJE-0' IGH~ 0.38000
Model Info: V3.3 No Cu  MYJ PEL WSM 3class

LW: RRTM SW: Dudhia

INTERVAL- 0,10000E-01
Ther-Diff 444 m, 43 levels, 3 sec
DIFF: simple KM: 2D Smagor

_ c) Trajectories from 0500-0700 UTC

1688 em « 1 (VER]
Ther-Diff 444 m, = 43 levels, 3 sec

DIFF: simple K¥: 20 Smagor

680

640

600

560

520

1 480

440

400

360

320

UNCLASSIFIED

b) Surface Dosage at 0700 UTC
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d) Cross-section of concentration at 0700 UTC

1.00E-09
1.00E-10
1.00E-11
1.00E-12
1.00E-13
1.00E-14
1.00E-15

PENNSTATE

)
¥

Terrain-induced gravity waves were

found to have an impact on AT&D.

»Small changes in the location of the
wave crest and underlying rotor result in
significantly different transport and
dispersion patterns.

»Rotors can also transport harmful
materials suspended above ground level
to the surface or circulate surface
releases over the same location.

» Terrain-induced gravity waves can also
affect the downstream transport of
harmful materials.

Additional cases are needed in order to
test the sensitivity of AT&D to the
presence of internal-gravity waves and
the ability of the model to forecast non-
wave cases versus stationary and non-
stationary wave events. More R&D is also
needed to improve the model physics for
these weak wind, stable conditions.
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Ensembles: Advanced Data ¥
Assimilation (Lili Lei)

/ \ %:---+G-ws-wl-(>zom>z)

tobs tir;e
EnKF: ‘ X, =%,+K(x’-%,)

tobs tin:we
Hybrid Nudging / \di t f(Kow, ) (X7 0%)
- EnKF: a

tobs tume

* The hybrid nudging coefficients:
d X

Pl +G-ws-w,-(io—i)

- —
G w, ZW ArK



Cannot say enough about judicious penNSTATE
use of knowledge gained from the ﬁ

shallow water equations...
7l T T T " " mEan

-

o8

-
~

-2
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Hybrid Nudging - EnKF in 2D %
Shallow Water Model (SWM)

% 5
9;\ o 1} m
p .
N o
SND BioL00IC e

 The 2D shallow water equations... and hybrid nudging terms :
ou ou Ou oh 2 0 0
v +u ™ +v3y - fw=0 ga+KV w G, W, (u —u)+ € BN,[Q n \)+ G, BW,[Q h ] @
dv  ov  Ov oh 5 . )
5+ug+v5+fu=— gg+KD w @ BW,[Q U ur G, w, -(v Dv)+ G, BWIEQ h ] l)

g}tl +u gi +vgﬁ ==h %"'Z_;)"'szh"‘@w @vt[@o Du)+ G, ‘w, -(v" Dv)+ G,, W, -(ho —h)

Diagonal (red) terms: traditional nudging

—
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Hybrid Nudging - EnKF: =
- Continuous Data Assimilation

2D Shallow Water Model (SWM) Results
(Lei and Stauffer 2009)

Quasi-Stationary Wave Case Moving Vortex Case
T 2 I
NOFDDA NOFDDA
= Nudging = Nudging
12F EnkF f 181 EnkF
== Hybrid EnKF ' == Hybrid EnKF
— — EnKS — — EnKS

o
L=}
T

o
[=2]
T

MNormalized RMS Error

MNormalized RMS Error

o
=
T

021

1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 3 5 9 12 15 18 21 24 ] 3 5 9 12 15 18 21 24
Model Time ¢h) Modlel Time ¢h)

Extend Lorenz and SWM hybrid nudging — EnKF to 3D WRF / DART...

—
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Methodology for the HNEnKF ¥

obs obs obs
i‘;::mble > EnKF > EnKF > EnKF >
G(K’ tw) G(K’tw) G(K’tw)

a a a

nudging X nudging X nudging

Nudgin
stateg & = Nudging > Nudging Nudging —mmm>

A~ AN N

obs obs obs

X
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WRF/DART Ensemble @

Confiqgurations
JJlll 3 B 5 " m m EAn

« |C ensemble: contains perturbations of the ICs and LBCs.

» Adding perturbations, which are drawn from a multivariate normal distribution by
use of the WRF-3DVAR, to the ICs and LBCs.

e Ensemble size is 24 or 48

« |CPH ensemble: contains multi-physics members in addition to the
perturbed ICs and LBCs members

» Eight physics configurations are used

e Ensemble size is 24 or 48

Physws. Microphysics Convective PBL
configuration
1 WSM-3 Kain-Fritsch MY]J
2 Lin et al. Kain-Fritsch MY]J
3 WSM-3 Betts-Miller-Janjic MY]J
4 WSM-3 Kain-Fritsch YSU
5 Lin et al. Betts-Miller-Janjic MYJ
6 Lin et al. Kain-Fritsch YSU
7 WSM-3 Betts-Miller-Janjic YSU
8 Lin et al. Betts-Miller-Janjic YSU

(Lei and Stauffer 2011)
I ——
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Experimental design g

Exp. Name Exp. Description
CTRL Assimilate no observations
FDDA Assimilate observations by observation nudging
EnKFIC24 Assimilate observations by EnKF with IC ensemble and 24 ensemble members
EnKFIC48 Assimilate observations by EnKF with IC ensemble and 48 ensemble members
EnKFICPH24 Assimilate observations by EnKF with ICPH ensemble and 24 ensemble members
EnKFICPH48 Assimilate observations by EnKF with I[CPH ensemble and 48 ensemble members
HNEnKFIC24 Assimilate observations by HNEnKF with IC ensemble and 24 ensemble members
HNEnKFIC48 Assimilate observations by HNEnKF with IC ensemble and 48 ensemble members
HNEnKFICPH24 Assimilate observations by HNEnKF with ICPH ensemble and 24 ensemble members
HNEnKFICPH48 Assimilate observations by HNEnKF with ICPH ensemble and 48 ensemble members

—
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g% Overview of the 18-20 September g
> 1983 CAPTEX-83 (tracer) case

@ 16 TG 19 September

(After De

50
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Evaluation of temporal smoothness g
and insertion noise for IC ensemble

300 T T T T T T T T T T T T T T T

—FDDA

EnKFICZ24 ens member
EnKFICZ24 ens mean
—— HMNENnKFIC24

na

o

o
T

200 -

150 | .

o
o
T

|

Surface pressure tendency (hPa/3h)

9 12 15 18 21 24 27 30 33 36 39 42 45 438
Model Time {h)

—
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Evaluation of | emporal smoothness PENNENTA—TE

and insertion noise for IC and ICPH 73
ensembles

200 T T T T T T T T T T T T T T T 45
— EnKFICZ24 ens mean —HMNENRKFIC24
oy — EnKFICPH24 ens mean | ol HNERKEICPH4 |
-C o~
5] £
160 : m
E W 35} i
i
= 1} - =
& 5\30- .
R . c
[
E D3 -
2 00t . 2
o o
P oot 4
7 80 i 5
7] w0
Q o5t .
g e0f - 5
@ [
§ i | u@m- :
D 1 IL\hl 1 1 I\-“\'l 0 1 1 | » | |
038912151821242?30333839424548 0 3 6 9 12 15 18 21 24 27 30 33 3% 39 42 45 43
Model Time {h Model Time (h)

UNCLASSIFIED 52



UNCLASSIFIED PENNSTATE

Evaluation using independent @
surface tracer data

Ordinal ranking Experiment Sum of misses and false alarms
1 FDDA 20
2 HNEnKFICPH24 21
2 HNEnKFICPH48 21
3 HNEnKFIC24 22
4 HNEnKFIC48 24
5 EnKFIC48 26
6 EnKFIC24 27
7 EnKFICPH24 31
7 EnKFICPH48 31
7 CTRL 31

—
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UNCLASSIFIED
e ENSEMbles: ﬁuantlfymg =
Y &%k Uncertainty (Walter Kolczynski)

(e} 5 AT
4 5 o o G
‘ S v 8 .
y /N Il B B B B B m mAn
0 BmLOG“;;\'

» Meteorological (MET) errors have important implications to
many weather applications (e.g., AT&D, TDAs)

 Ensemble of AT&D models attractive but not practical for
operations

 Efficient way to compute MET uncertainty from an NWP
ensemble for input into a single AT&D model solution

(HPAC/SCIPUFF wind variance matrices, UUE, VVE, UVE)

* NWP-ensemble variance (spread) is at best an approxmate
measure of actual uncertainty/error variance..

—
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| Zkve

D TEC,

> )

2 @,
AL
0 = /%o o
N ey )

A < b3 3

274 7/ 3 A B m "M W W .ma1l
2 BIOL o

« Can a single AT&D prediction using NWP-
ensemble derived MET fields and wind
variances (uncalibrated or calibrated)
approximate and improve upon an AT&D
prediction based on an explicit AT&D ensemble?

 C==ywve develop a simple calj

NWP,
elice

NWP,

Decision Decision

Maker Maker

NWP
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Linear Variance Calibration (LVC) &
Methodology

Binned Variance Relation for 10m_AGL U
30hr lead _ Feb _54 forecasts

................................................................................

—
(00}
|

...............................................................................

—_ -
(o] N (&)}
|

Error Var of Bin ((m/s)?)
»

o r;’ll;l‘l]:‘l;IT; l':[l'
o 3 6 9 12 15 18

Mean Ens Variance of Bin ((m/s)?)
—
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o, e Daily MET-SCIPUFF @
> Ensemble Testbed Overview

x
fmg W

‘x Y . EE HE B m M m m man
« Use 21 NCEP 32-km SREF members (ARW, NMM, ETA,
RSM) over suitably long periods (~ 1 year)

e Run 21 SCIPUFF dispersion calculations
 Combine dosage statistics (explicit ensemble)

 Run SCIPUFF using 4-km MM5 FDDA to generate “ground
truth” dispersion

e Process SREF outputs for mean ensemble MET and MET
uncertainty (wind variances)

 Run single 24-h 32-km SCIPUFF with ensemble MET
uncertainty wind variances (SREF hazard prediction)

e Compare single-SCIPUFF SREF hazard prediction with
32-km explicit SCIPUFF ensemble using probabilistic
verification and “ground truth” dispersion calculations




Surface Dosage

Surface Dosage
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Surface Dosage
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Surface Dosage
TRACER at 07-May-10 18:00Z (24.0 hrs)

SREF Member Mean
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P

Surface Dosage
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NACEMENT

PENNSTATE

| Zkve

Surface Dosage
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Mean Dosage and @"ENN%E
Comparison -l

MANAGEME

MMS Truth (color) + SREF
Ensemble Probability>1.0E-9

SREF Ensemble Average
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Sample Reliability
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June-June Reliability Diagram, MM5 (t_avg = default)
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@ Methodology for the HNEnKF

Model equation with Hybrid nudging coefficients:

additional nudging terms: G w = 1 K

§= X)|+G-w -w |y’ —Hx S w, Lt
dt o c

0 _.
N

« The hybrid nudging coefficients come directly from the EnKF gain matrix K that
contains information from the flow-dependent background error covariances
computed from an ensemble forecast.

« Thus there is no need to specify the nudging strength or the spatial nudging
weighting coefficient in either the horizontal or vertical directions.

« The hybrid nudging terms include not only the standard diagonal terms (i.e., u
correction in u-equation, v correction in v-equation, etc.) in the nudging magnitude
matrix G, but also the off-diagonal terms (i.e., inter-variable influence).

* This statistical inter-variable influence is included in the model’s relaxation terms to
gradually and continuously force the model towards the observations.

« Thus the error spikes and dynamic imbalances often produced by intermittent EnKF
are reduced.
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Experiment design — parameters

Surface data Surface data

_ Horizontal Half- Horizontal error Vertical error Error
. Nudging vertical radius  vertical radius  perjod of _ .
Experiment radius of . . covariance covariance covariance
strength of influence of influence nudging
influence localization localization inflation
(stable PBL)  (unstable PBL) time
window
4x104 PBL top plus
FDDA 67-200 km 100 m 1-2h --- - -
sl 50m
Adaptive
EnKF --- - - - - 533 km 150 hPa
inflation
Adaptive
HNEnKF _— -— -— -— 1-2h 533 km 150 hPa
inflation
DEPARTMENT OF
METEOROLOGY .

COLLEGE OF EARTH AND
MINERAL SCIENCES



PENNSTATE Observations Research Progress:
i) Characteristics vs. Speed,;

6-hr Ave, Spring, Summer, Fall 2009
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Probability Distribution of One-minute Averages of 5-s Heat

PENNSTATE
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Fluxes at Rock Springs for the Very Weak Wind, Highly Stable
Regime
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Important non-zero
flux events are rare

98% of data (nearly 40,000 events) ‘
carries near-zeron flux.

00— l

The rare high-flux events lead to a high
kurtosis = 175, skewness = -6.
Conclusion: It is inherently difficult to
parameterize the most important events.
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PENNSTAT One Min. Averaged Sigma_w and Scaled Sigma_w for Near-
= calm Nights with Strong Averaged Stratification (Black) and
w Weaker Stratification (Red) as a Function of Rb
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Sensitivity of Parcel Trajectories to Model
Resolution & PBL Physics

Time: 0800 -1112 UTC Case: 7 Oct. 2007
Exp. Baseline Exp. Modified PBL Physics

Trajectory Sensitivity:

*Reduced mixing in modified
PBL physics allows more sub-
meso motions and inter-parcel
variability.

*Lower 1.3-km horizontal

| Exp. LrgDZ
e

. : v : ’ ’ : : : — e /./, ......
resolution produces larger : : '- S

AT RP  p
L%

speed bias.

*Lower standard vertical
resolution suppresses gravity-
driven slope flows.




Surface Dosage at 3 h Following Release and
Valid at 11 UTC

SCIPUFF Sensitivity:

*Reduced mixing in MYJ-mod 1 | I
allows more sub-meso motions '
and greater dispersion. 1 1

*Lower horizontal resolution
produces larger speed bias, /2
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*Lower vertical resolution ‘
suppresses gravity-driven
slope flows and produces a )
plume more parallel to the
mountain.
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Modeling the Stable Boundary Layer and its e
Impact on Atmospheric Transport and Dispersion ?;01_015

Dawd R. Stauffer?, Brian P. Reen?, Astrid Suarez?, Brian J. Gaudet?, Joshua D. Hoover?, Scott J.
Richardson?, Larry Mahrt?, and Nelson L. Seaman!
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Comparison of sodar-measured winds with

WRF 0.444-km domain Observatlon Network sonic-anemometer wind data at 50-m tower
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The effect of terrain-induced gravity waves on hazard
prediction is investigated using a combined observation
and modeling study over the complex terrain of Central
Pennsylvania.
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Evaluation using independent g

surface tracer data

Total
35
30
25
20
15
10
5
0
CTRL EnKFIC24 HNENnKFIC24 | EnKFICPH24 |HNEnKFICPH24| EnKFIC48 HNENKFIC48 | EnKFICPH48 |HNEnKFICPH48
W Hit 24 29 23 26 22 27 24 25 21 26
W Miss 12 7 13 10 14 9 12 11 15 10
M FalseAlarm 19 13 14 12 17 12 14 13 16 11

The composite statistics (hits, misses and false alarms) through the 24-h period
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