
Thunderstorm Auto Nowcasting
Operations Guide

1. Hardware

2. Software

3. Environment Config

4. Data Display

5. Algorithms

6. Installation

7. Monitoring

8. Data Architecture

9. Procmap and the Auto–restarter

Hardware	
The Auto-Nowcast Environment contains a set of machines (or hosts) with specific tasks. Multiple
machines are required to meet the resources required by the various algorithms in the Auto-Nowcast
Environment. The number of machines in a given Auto-Nowcast Environment installation will vary
depending on the number and types of algorithms running at that installation and the data available.

The minimal Auto-Nowcast Environment configuration consists of the two machines which have graphical
data displays running on them: the Control Host and the TITAN Host. Other Hosts are added to the
configuration to support non-graphical, analysis algorithms.

Throughout this document, the Auto-Nowcast Environment machines are referred to by the main function
that they serve.

* Control Host
* TITAN Host
* Other hosts, for example, Colide Host, Ingest Host, etc.

In general, the hosts are configured identically with the same CPU, memory, swap space, and OS
version. The host must be a high-end UNIX workstation with Linux 2.4.21 or higher installed.

The minimal recommended configuration for a nowcast host includes a 2.66 GHz processor with 2-3 Gb
RAM and 146 Gb SCSI HD. Two ethernet cards are recommended on any machine which ingests a raw
radar data from a UDP broadcast stream. This is required mainly to reduce network traffic problems. If
radar data is being ingested via an LDM or TCP/IP , then a second card is not necessary.

Software	
The main software components of the Auto-Nowcast Environment are:
Data Service
Process Control
Utilities

Data Service
Data in MDV, SPDB, FMQ, and Titan Storm Track formats are available through data servers. In
addition, SPDB data is served out in a graphical format, Symprod, suitable for rendering on X-displays.
The servers and clients communicate via TCP/IP protocol. This model allows a client (or application)
running on one host within the Auto-Nowcast Environment to access data which resides on a different
host. Try to co-locate data and algorithms which use the data on machines as much as possible to
minimize overhead of data serving across hosts.

ASCII datasets are not served but are read directly from disk files by the various algorithms which use the
ASCII data.

Following is a list of some of RAP's data service applications and their functions:

DataService

Application Function
DataMapper

Contains a map of data sets realtive to $RAP_DATA_DIR, used by Sysview, the system
monitor

DsMdvServer Server for data in MDV format.
DsSpdbServer Server for data in SPDB format.
DsFmqServer Server for FMQ messages.
DsTitanServer Server for titan data.
DsServerMgr

Server manager handles requests from applications and starts necessary servers.
(Thus DsServerMgr is the only server which needs to be included in a host process list.)

Janitor
Recurses through the data directory tree and compresses or
removes data based on _Janitor param files located with the data.

Process Control
Process control referrs to a simple and effective mechanism to keep realtime processes running in the
Auto-Nowcast Environment.At the heart of the process control mechanism is the process mapper, a.k.a.
PROCMAP, and a program called auto_restart which reads and responds to the output of the process
mapper.

All of the realtime processes within the Auto-Nowcast Environment register with the process mapper on a
regular interval. This regular registration, or heartbeat, provides an indicator of the status of each realtime
process in the Auto-Nowcast Environment. auto_restart compares the output of the process mapper with
a user configured process list and makes sure all of the processes in the list are up and running and
registering at proper intervals.

Following is a list of utilities, applications, and scripts used for process control:

Control Utilities, Applications and Scripts

Utility,
Application,
or Script

Function

cron
cron is a UNIX utility which is a daemon used for executing commands on a timed
schedule.

procmap procmap is an application with which system applications register on a regular basis.

auto_restart

auto_restart is an application which uses procmap and a process list to insure that all
processes in the list are running and checking in with procmap at regular intervals. If a
process is missing, auto_restart will use the start script in the process list to restart it. If a
process is hung, auto_restart will use the 'kill' and 'start' scripts in the process list to kill it
and then restart it.

procmap_list_
start

procmap_list_start starts all processes in a process list with the start scripts for each
process indicated in the list.

start_process
.control

start_process.control is a script run by cron every five minutes. If necessary, this script
starts procmap, the processes in the process list
with procmap_list_start and auto_restart.

host_startup

host_startup executes the start_up sequence for a single host in the system. Here is the
sequence:

1. Concatenate relevant $CONTROL_DIR/params/host_env.* files and install
in $CONTROL_LOCAL_DIR/runtime/HOST_ENV. This file contains the system
hosts and their roles.

2. Install $CONTROL_DIR/params/radar_env.lookup in $CONTROL_LOCAL_DIR/ru
ntime/RADAR_ENV
(which is used for text substitution in process list.)

3. Concatenate relevant process lists from $CONTROL_DIR/proc_list based on the
host roles in HOST_ENV and install
in $CONTROL_LOCAL_DIR/runtime/PROCESS_LIST

4. Concatenate relevant cron files from $CONTROL_DIR/crontab and install
in $CONTROL_LOCAL_DIR/runtime/CRONTAB_LIST and start cron.

5. Start start_process.control with procmap_list_start and auto_restart using $CON
TROL_LOCAL_DIR/runtime/PROCESS_LIST.

host_shutdow
n

host_shutdown executes the shutdown sequence for a single host in the system. Here is
the sequence:

1. kill cron
2. kill auto_restart
3. kill processes in the process list
4. kill data servers
5. kill procmap
6. remove FMQs if part of entire system shutdown.
7. remove HOST_ENV

niwot_startup niwot_startup executes host_startup on each host in the system.
niwot_shutdo
wn

niwot_shutdown executes host_shutdown on each host in the system.

Utilities

Following is a list of some handy utilities and their functions:

Utilities

Application Function
PrintMdv Print contents of mdv file.
SpdbQuery
or
XSpdbQuery

Query an SPDB database

print_procmap prints the processes currently registering with procmap
RadMon View radar beam data as it is being written to an FMQ
snuff
or
snuff_inst

kills processes or instances of processes

utime_decode decodes unix time into UTC and local time

LogFilter
Writes application output in dated subdirectory format.
(All of the start scripts for applications pipe the
application ouput to LogFilter)

running
Returns 0 if process is running and 1 if it is not.
(Most of the start scripts use this utility before starting an application
so that more than one instance of an application will not start.)

Environment	Configuration	
The Project Directory: Application Param Files and Start Scripts, Host Config, and Data Config.
Environment Variables
Network Communications

The Project Directory: Application Param Files and Start Scripts, Host Config, and Data
Config.
The project directory or $PROJ_DIR contains all project specific information including: "homes" for all of
your project specific application parameter files and start scripts, project host configuration and process
lists for each host, cvs project checkout script and build scripts, data directories and data param files for
each host, and system monitor.
Following are the three subdirectories of $PROJ_DIR that contain all host, data, and software
configuration information for a particular installation of the AutoNowcaster.

$PROJ_DIR subdirectories for process control, and host data and software configuration

Directory Contents

control

crontab -- crontab files for each host
params -- email.list for nightly stats
host_env.<mode> (host/hostRole pairs)
mode.equiv (system startup mode equivalences)
radar_env.lookup (radar/host pairs + identifying keyword)
proc_list -- process lists for each host
runtime -- some runtime files including:

NIWOT_LOG -- system startup times, shutdown times, and mode

dataHome

bin -- start and kill scripts for data service apps. DsServerMgr, Janitor, DataMapper
params -- param files that will be copied to data directories (like the _Janitor files), plus static
terrain files.
data_lists -- lists of data directories on each host and param files that should reside in
particular data directories.

utilsHome
bin contains checkout and build scripts of all apps and libs used in a particular installation of the
autoNowcaster.

Following is a list of homes for applications. Each application home generally contains two
subdirectories: bin and params. The bin subdir contains all start scripts and kill scripts(if there are any)
for the applications. The params subdir contains all of the application parameter files.

$PROJ_DIR subdirectories: Homes for applications

Home Description Applications

adjointHome Home to adjoint. adjoint

advectHome Home to all applications related to advection.
ctrec
advectGrid
stratiform_filter

ciddHome
Home to all applications related to CIDD the Configurable Interactive
Data Display.

CIDD
DrawFmq2Bdry
GridPointSelect

Sounding2Metar
SoundingPlot
SoundingText

cronusHome
Home to all applications which generate data for the forecast (with
the exception of titanGrid which is in titanHome).

bdryCollision
bdryGrid
bdryStormCol
cronus
gandi
radarTrigger

ingestHome
Home to all applications which ingest data into the AutoNowcast
environment (except radar ingest which has its own home.)

LdmDynamic2Static
Metar2Spdb
NidsVad2Spdb
derived_ruc_fields
kavltg2spdb
ruc_sounding
surf_interp

radarHome
Home to all radar ingest, quality control, and reformatting
applications.

nexrad2dsr
Dsr2Vol
MdvMerge
BrightBand
RadMon
vadAnalysis

titanHome Home to Titan and Titan display applications

Titan
Rview
TimeHist
Tstorms2Spdb

sysviewHome
Home to applications, params files, and diagrams related to the
system monitor called SysView.

SysView

Environment Variables

The Auto-Nowcast Environment is run under the special user account nowcast The nowcast user account
makes heavy use of UNIX environment variables for navigating around the Auto-Nowcast Environment.
Environment variables provide an easy mechanism for installing a generic Auto-Nowcast Envrionment
setup at different field sites. $PROJ_DIR subdirectories for process control, and host, data and software
configuration.

Rap directory
$RAP_DIR /nfs/ncar/rap

Bins, Libs, and Includes Environment Variables
$RAP_SHARED_BIN_DIR /nfs/ncar/bin
$RAP_SHARED_INC_DIR /nfs/ncar/inc

$RAP_SHARED_LIB_DIR /nfs/ncar/lib
$RAP_BIN_DIR /nfs/ncar/rap/bin
$RAP_INC_DIR /nfs/ncar/rap/include
$RAP_LIB_DIR /nfs/ncar/rap/lib

The Project Directory Environment Variables
$PROJ_DIR $RAP_DIR/<project name>
$ADJOINT_HOME $PROJ_DIR/adjointHome
$ADVECT_HOME $PROJ_DIR/advectHome
$CONTROL_DIR $PROJ_DIR/control
$CIDD_HOME $PROJ_DIR/ciddHome
$COLIDE_HOME $PROJ_DIR/colideHome
$CRONUS_HOME $PROJ_DIR/cronusHome
$DATA_HOME $PROJ_DIR/dataHome
$CRONUS_HOME $PROJ_DIR/cronusHome
$COLIDE_HOME $PROJ_DIR/colideHome
$RADAR_HOME $PROJ_DIR/radarHome
$SATELLITE_HOME $PROJ_DIR/satelliteHome
$SYSVIEW_HOME $PROJ_DIR/sysviewHome
$TITAN_HOME $PROJ_DIR/titanHome
$UTILS_HOME $HOME/utilsHome

Data and Logs Environment Variables
$RAP_DATA_DIR $HOME/data
$LOG_DIR $HOME/logs

Network Communications
Cross Mounted File Partition
All the hosts in the Auto-Nowcast Environment cross-mount (via NFS) one file partition called
$RAP_SHARED_DIR. The partition is exported with read/write permissions to all Auto-Nowcast
Environment hosts. $RAP_SHARED_DIR contains the NCAR executable applications as well as the
project directory ($PROJ_DIR) in which the components of Auto-Nowcast Environment resides.
Local Area Network

The hosts within the Auto-Nowcast Environment communicate using TCP/IP protocol.

Radar Network

Each Auto-Nowcast Environment host which has radar data coming into it from a UDP broadcast has a
second ethernet card for that purpose. The use of a second ethernet card for broadcasting radar data
protects the load on the local area network in with the Auto-Nowcast Environment is installed. If radar
data is being broadcast via TCP/IP there is no need for a second ethernet card.

Data	Display	
Two types of graphical data displays are available in the Auto-Nowcast Environment:
Cidd
Rview

Cidd
Is the most general of the data display applications. It is highly user-configurable and is capable of
displaying both MDV and SYMPROD (the graphical form of SPDB) data.

Cidd is a X-based, real-time data display application which supports PPI, CAPPI, and cross sectional
views. Cidd is the main display tool within the Auto-Nowcast Environment. It is highly configurable and is
used to display the majority of the MDV and SPDB formated data produced within the Environment.

Rview
Is part of the TITAN application and provides a detailed graphical view of the thunderstorm tracking
algorithm.

The X-based display utility Rview is part of the TITAN analysis algorithm and is used to display
thunderstorm tracks in real-time over top of CAPPI radar data as well as vertical sections through storms.

For more information on the TITAN application and using the Rview display, see TITAN: Thunderstorm
identification, tracking, analysis and nowcasting - a radar-based methodology and The TITAN User's
Manual.

Analysis	Algorithms	
The Nowcast Engine
Thunderstorm Identification, Tracking, and Features
Advection
Variational Doppler Radar Analysis
Satellite Algorithms
Data Ingest and Quality Control

The Nowcast Engine

Cronus

Cronus gathers and combines the relevant user defined meterological data that have been generated by
the various algorithms with user defined functions and weights to produce an initiation interest field and a
growth and decay interest field. These These two interest fields as input into gandi.

Cronus is triggered to run by radarTrigger which watches the incoming radar beam data and sends a
message or 'trigger' to cronus when a user specified tilt has begun. Cronus then sends a forecast trigger
to algorithms producing data used to create the interest fields indicating that the algorithm should run and
produce forecast data for specific time in future. Cronus then gathers output from the algorithms and
produces its interest fields.

Gandi

Gandi takes as input the initiation and growth and decay interest fields which are ouput by cronus and the
dbz advect field. User defined step functions are applied resulting in a final reflectivity or precip rate
forecast. The initiation interest field is used to calculate and initiation reflectivity field (based on user
defined step function.) The growth and decay interest field is used to modify the dbz advect field, either
growing or decaying regions above a user specified reflectivity threshold. Finally, the initiation and growth
and decay reflectivity fields are merged.

Scripts: $CRONUS_HOME/bin

Parameters: $CRONUS_HOME/params

Executables
Input Data Output Data

Description Format Description Format

radarTrigger radar tilt indicator fmq tilt trigger fmq

cronus

tilt trigger fmq forecast trigger fmq

user selected interest fields MDV
initiation or growth and decay
interest fields

MDV

gandi
advected reflectivity field MDV

2D reflectivity field MDV
initiation or growth and decay MDV

interest fields

Cronus operates in realtime mode by triggering at the start of the 0.5 degree radar tilt. When the nowcast
domain includes several radars, the trigger can be set by MdvMerge , the application which merges the
cartesian radar data from all radars.In addition to the realtime trigger, the user can manually trigger a
nowcast at anytime using the graphical interface to the cronus application.

Thunderstorm Identification, Tracking, and Features

TITAN is a collection of processes which identify and track thunderstorm above a user-specified
reflectivity (dBZ) threshold.

Rview and TimeHist are both graphical data displays for Titan output.

titanGrid converts titan storms characteristics into gridded fields. It can also tag storms with point statistics
such as lightning strike statistics and probability of hail. Optionally, storms can be extrapolated using titan
motion information.

StormInitDetect detects new storms from Titan and outputs the latitude, longitude, and time of storm
initiations.

StormInit2Field grids the output of StormInitDetect and produces regions of storm initiation defined by
gaussians at each storm initiation location.

Scripts: $TITAN_HOME/bin

Parameters: $TITAN_HOME/params

Executables
Input Data Output Data

Description Format Description Format

Titan cartesian radar data MDV thunderstorm information
Titan
StormTrack

titanGrid

Titan thunderstorm
information

Titan Storm
Track 2D gridded storms tagged with storm

characteristics or point data statistics
MDV

point data SPDB

StormInitDetect
Titan thunderstorm
information

Titan Storm
Tracks

Points of thunderstorm initiation SPDB

StormInit2Field
Points of
thunderstorm
initiation

SPDB
Gridded regions of thunderstorm
initiation

MDV

Rview

Cartesion reflectivity
data

MDV

Graphical data display

Storm information
Titan Storm
Tracks

TimeHist
Storm information

Titan Storm
Tracks

Graphical data display

For more information and detail on the TITAN application, see TITAN: Thunderstorm identification,
tracking, analysis and nowcasting – A radar-based methodology and the TITAN User's Manual.

Advection

ctrec employs cross-correlation analysis of echos to calculate motion vectors from radar data. ('trec' is an
acronym for Tracking of Radar Echos by Correlation.)

advectGrid uses ctrec motion vectors or sounding data to advect gridded data. It is usually used to advect
reflectivity and storm characteristics.

startiform_filter filters flat echoes from radar data at user specified elevation. Used to isolate radar cu.

Scripts: $ADVECT_HOME/bin

Parameters: $ADVECT_HOME/params

Executables
Input Data Output Data

Description Format Description Format

ctrec cartestian radar data MDV motion vector field MDV

advectGrid

motion vector field from ctrec MDV

2D advected dataset
image

MDV
sounding data used as backup to motion
vector field

SPDB

dataset to be advected MDV

stratiform_filter cartesian radar data
2D filtered
dataset

MDV

For more information on ptrec see Determination of the Boundary Layer Airflow from a Single Doppler
Radar.

Variational Doppler Radar Analysis (VDRAS)

VDRAS is a system that produces high-resolution three-dimensional wind in the boundary layer. The wind
field is obtained through a retrieval process combining single-Doppler radar observations and a numerical
model using a four-dimensional variational scheme. The output fields from VDRAS include three velocity
components, divergence, and temperature.

Scripts: $ADJOINT_HOME/bin

Parameters: $ADJOINT_HOME/params

Executables
Input Data Output Data

Description Format Description Format

adjoint

PPI radar volume MDV

3D wind, divergence, and temperature fields MDV surface observations SPDB

soundings SPDB

For more information on the adjoint method see Forecasting Storm Growth and Decay using Low-level
Radar Data and the Adjoint Method.

Satellite Algorithms

satDerive calculates differences and standard deviations of satellite channel data. Calculates short wave,
infrared reflectance, an icing index.

satThresh thresholds satellite data. Threshold values are applied to the visible and clear IR channels.
Then these fields are used to mask all other fields, so that only pixels at locations that have passed the
thresholding tests on IR and the visible are output - the rest are marked as bad or missing.

RateOfChange calculates the rate of change of MDV gridded data. Detects cloud growth by monitoring
cloud top temperatures from infrared satellite data.

CloudClass classifies clouds based on a set of threshold based rules. Thresholds can vary sinusoidally
according to the time of the day or year.

Scripts: $SATELLITE_HOME/bin

Parameters: $SATELLITE_HOME/params

Executables
Input Data Output Data

Description Format Description Format

satDerive raw satellite data MDV derived satellite data fields MDV

satThresh satellite data MDV thresholded satellite data MDV

RateOfChange IR Satellite Data MDV 2D rate of change data values MDV

CloudClass satellite data MDV bitwise map of cloud type MDV

Data Ingest and Quality Control
The algorithms in the Auto–Nowcast Environment operate on data RAL's internal data
formats: FMQ, MDV, SPBD, or Titan Storm Tracks. Many data ingesters/converters have already been
written and are readily available. For other datasets, special converters may need to be developed to
bring the data stream into the Auto-Nowcast Environment. Following is a list of data ingest and quality
control applications:

Application Description Input Output

nexrad2dsr
Level-2 NEXRAD radar data
ingester

Level-2 NEXRAD from
LDM, TCP/IP port

DsRadar written to
FMQ

JamesD Dealiases radar data DsRadar
DsRadar written to
FMQ

Dsr2Vol

Collects radar beam data and
writes radar volumes
in various coordinates (polar, ppi,
cartesian.)

DsRadar from FMQ
DsRadar written to
FMQ

BrightBand

Removal of enhanced reflectivity
in melting layer
due to hydrometeor aggregation
and water coating.

MDV (cartesion
coordinates)

MDV (cartesion
coordinates)

ApFilter Anomalous propagation filter
MDV (cartesion
coordinates)

MDV (cartesion
coordinates)

NidsVad2Spdb
Ingests and reformats NEXRAD
Level 3 Vad data

NIDS VAD data Spdb

Terrascan2Mdv Ingests satellite data Terrascan MDV

Metar2Spdb
Ingests and reformats surface
observations

METAR Spdb

sndgIngest
or
classIngest

ingests and reformats sounding
data

class Spdb

NWSsoundingIngest
ingests and reformats sounding
data

WMO Spdb

kavltg2spdb
ingest and reformats lightning
data

Kavaouras Spdb

rucIngest ingest RUC model data RUC GRIB MDV

derived_ruc_fields
derive additional fields from
primary RUC fields

MDV MDV

ruc_sounding
Create a sounding from RUC
model data

MDV SPBD

Installation	
Using This Configuration Guide
Hardware Requirements & Purchasing
UNIX System Setup
The Nowcast User Account
Shared Project Space
Creating a new Auto-Nowcast Project in CVS
Checking out an Existing Auto-Nowcast Project from CVS
Modifying & Installing .dot Files
Establishing ssh authentication
Modifying Process Control Files
Defining the Data Hierarchy
Building Libraries & Applications
Modifying Parameter Files
Setting up a System Monitor
Ready, Set, Go...
Freezing the Source Code
Packaging up the Field Project
At the Field Site

Using This Configuration Guide
The Auto-Nowcast system has been installed more than a dozen times over the last 8 years using varying
system layouts, configuration techniques, scripts, and algorithms. By and large the configuration has
undergone significant changes with each installation, always striving for improvements over the previous
installation. Keeping in mind that every approach has had its share of strengths and weaknesses, the
following should be considered a guide not a cookbook recipe. To ease the burden of the installation
process, explicit command are often included; however, these should be interpreted more as suggestions
than instructions. This guide is neither complete nor comprehensive, but reflects a suggested
configuration largely based on the Thor2003 project.
The UNIX commands in this installation guide are expressed in a combination of font style and the
international standard EBNF notation for language syntax including:
|
meaning "or"
<>
angle brackets used to surround non-terminal symbols
[]
square brackets used to surround optional items
{}
curly brackets used to surround repetitve items of zero or more
()
parentheses used for grouping

The angle brackets are to distinguish non-specific syntax (also known as non-terminal symbols) from
terminal symbols which are written exactly as they are to be executed. For example, the command:

mv projects/<prototypeProject> projects/<newProjectName>

indicates that the reader is to substitute exact content for the category names prototypeProject and
newProjectName while all other parts of the command are to be types as is. The reader might therefore
execute the command:

mv projects/Thor2003 projects/Mendoza

Hardware Requirements & Purchasing

Before purchasing hardware for the Auto-Nowcast environment, you must determine which algorithms will
be part of the field project and which machines will play which roles within the project. This determination
will dictate how many machines should be purchased.

Typical Auto-Nowcast Machines

Role Logical Name(s)
Process Control & Graphical Display

$CONTROL_HOST
$DISPLAY_HOST

Storm Identification & Tracking $TITAN_HOST
Data Ingest $INGEST_HOST
Boundary Detection $COLIDE_HOST
Satellite Applications $SATELLITE_HOST
Ctrec Advection $ADVECT_HOST
Winds Modelling $ADJOINT_HOST
Final Nowcast $CRONUS_HOST
Field Display $FIELD_DISPLAY_HOST
The current hardware recommendations for each of the machines in the Auto-Nowcast environment
include:

! 2.66 GHz dual processors

! 3 Gb RAM

! One or two 146Gb HD

UNIX System Setup

The first step in setting up the Auto-Nowcast machines is to decide upon a file partitioning. A reasonable
recommendation is 2Gb for the root partition, 1Gb for the /home partition, with everything else in a data
partition, say /d1.

Later, in the section Shared Project Space, when it is necessary to establish areas to be used for cross
mounts, suggestions are made based on the existence of a /d1 partition.

The next step in the UNIX system setup for the Auto-Nowcast environment is to install the following
required software:

! Debian Linux version 3.0 or greater

! gcc/g++/egcc (libc6 required)

! g77

! gdb

! ddd

! pthread library

! ssh

! NTP (network time protocol) service

! The perl and python interpreters

! The mysql libs (for Metar2Spdb)

Other support software which may need to be installed includes:

! Xview on the machine(s) which will compile and/or run CIDD

! ImageMagick on the $DISPLAY_HOST

! Java if we are running SysView

The Nowcast User Account

Create the following user account on all project machines:

User: nowcast
UID : 10140
GID : 678 (shared)
There are two types of passwords that are used for the nowcast user account.

1. The internal password is used for all machines in RAP which have a nowcast account. This password
does not change.

2. The external password is used on Auto-Nowcast project machine which are out in the field. This
password is project-specific, determined by the lead engineer on the project, and can be changed.

While project machines are inside of RAP being set up for a field project, they should use the internal
password. Later, at the Field Site, you will change over to the external password.

Make sure that all other project members who get accounts on the field project machines are setup with
the group "shared" (GID 678) as their default group. This is necessary for interactions with CVS.

Shared Project Space
The Auto-Nowcast project space contains source code, libraries, application executables, and the field
project configuration. At RAP these components are contained on the cross
mount $RAP_SHARED_DIR (/rap) and $RAP_DIR (usually ~/rap). For Auto-Nowcast installation we do
not use /rap in order to avoid confusion and in order to allow the Auto-Nowcast user nowcast to do
a make_install_shared into a project-specific location rather than installing executables into /rap/bin.
This approach allows us to take a snap-shot of the software libraries and applications that will be fielded.
As is done at RAP, the $RAP_SHARED_DIR is installed on a cross mounted partition which we call the
shared project space. To begin installing an Auto-Nowcast environment, you must select which machine
you will use for serving the shared project space. Plan on at least 2 Gb to be used for the shared project
space. It is recommended that the $RAP_SHARED_DIR is cross mounted in the following way:

On <Shared Project Space Host>, the machine where the disk is physically mounted:
1. Login as root
2. Create /d1/ncar writable by group shared, owned by user nowcast (Use unix

commands chown and chmod)
3. Create /nfs
4. Create a link from /nfs/ncar to /d1/ncar
5. Add the following entry to /etc/exports: /d1/ncar <projectHostNames>(rw)
6. Execute the following commands:

/etc/init.d/nfs-kernel-server stop
/etc/init.d/nfs-kernel-server start

On all other project machines:
1. Login as root
2. Create /nfs
3. Add the following entry to /etc/auto.mnt: ncar <Shared Project Space host>: /d1/ncar
4. Execute the following commands:

/etc/init.d/autofs stop
/etc/init.d/autofs start

5. Verify that the cross mount exists using the command ls /var/autofs/mnt/ncar
6. Create a link from /nfs/ncar to /var/autofs/mnt/ncar
7. Verify that the link is okay using the command ls /nfs/ncar

Creating a new Auto-Nowcast Project in CVS

The next step in creating and installing a new Auto-Nowcast project is to check out an existing Auto-
Nowcast project from CVS to be used as a prototype. If, however, you are simply modifying an Auto-
Nowcast project which already exists in CVS, do not perform this step! Instead you should skip to the step
below Checking out an Existing Auto-Nowcast Project from CVS.

CAUTION! The find command in the sequence of steps below will remove all records of CVS for the
prototype project. This is an important step in setting up a new Auto-Nowcast project from a prototype
project. It is important, however, that this step not be taken on an existing Auto-Nowcast project which is
already checked into CVS!

1. Login as user nowcast on the $CONTROL_HOST
2. cd /nfs/ncar
3. mkdir rapShared
4. cd rapShared
5. setenv CVSROOT :pserver:nowcast@cvs:/cvs
6. cvs login
7. cvs co utilities/niwot
8. cd /nfs/ncar
9. mkdir rap
10. cd rap
11. cvs co projects/<prototypeProject>
12. cd projects/<prototypeProject>
13. find . -name CVS -exec rm -r {} \;
14. cd /nfs/ncar/rap

15. mv projects/<prototypeProject> projects/<newProjectName>
16. cd projects/<newProjectName>
17. cvs import projects/<newProjectName> v1 r1

Verify that the import command has read the entire tree into CVS. There have been incidents in which not
all of the new project has been entered into the CVS repository by the import command.

Checking out an Existing Auto-Nowcast Project from CVS

If you are working on an already existing Auto-Nowcast project, you must first check the project out from
CVS. To do this, perform the following steps:

1. cd /nfs/ncar/rapShared
2. setenv CVSROOT :pserver:nowcast@nut:/cvs
3. cvs login
4. cvs co utilities/niwot
5. cd /nfs/ncar/rap
6. cvs co projects/<projectName>

Modifying & Installing .dot Files
Now that you have a prototype project, the next step is to modify project-specific files to reflect the correct
settings for the new Auto-Nowcast project. The first set of files which need project-specific modifications
are a subset of the .dot files which reside in $RAP_DIR/$PROJECT or $PROJ_DIR. The .dot files
include:
! .cshrc

! .login

! .nexrc

! .xserverrc

! .xtrc

! .xearthmarker

! .xinitrc

! .xmodmaprc

! .fvwm

After making necessary modifications to some of these files, we will set up links to these files
in $HOME for user nowcast.
As user nowcast on the $CONTROL_HOST

1. cd
2. rm .cshrc -or- mv .cshrc .cshrc.bak
3. ln -s /nfs/ncar/rap/projects/<newProjectName>/.cshrc
4. Edit the file .cshrc and change the enviornment variable for $PROJECT to reflect the new project

name, i.e., setenv PROJECT <newProjectName>
5. source .cshrc
6. cd $PROJ_DIR

7. Edit the files in the .fvwm.* directories. These files configure the window manager on various hosts
based on the host function. A minimal configuration of the window manager might be designed like
this: From the $CONTROL_HOST, the pull down menus include remote logins to all nowcast hosts,
and system startup and shutdown. From the $DISPLAY_HOST, pull down menus are created to start
and stop CIDD(the nowcast display) and login to hosts relevant from the display site. From all other
hosts, menus include only remote logins.

� In .fvwm.*:
! init.hook: In the command that execs xearth, put in the latitude and longitude of the vantage point

from which you wish to view the earth. (Usually this is midway between the field site and NCAR.)
! main-menu.hook: Change machine names under Remote_Logins. Add or delete additonal pull-down

menu items for project.
! post-hook: Edit "NIWOT SYSTEM" menu items to be consistent with main-menu.hook menus.
� In .fvwm.control only:
! main-menu.hook: Add or delete modes for system startup.

8. Edit the file .xearthMarker to include the lat/lon position of the field project.
To install the new .dot files on each of the hosts, we will use the script setupNowcastUser.home. In
addition to installing the dot files, this script will create
directories $HOME/tmp, $HOME/controlLocal/runtime which is the directory which will contain
the runtime process control files. The different options -c and -f for setupNowcastUser.home result in
different window manager configuarations based on host function.
As user nowcast on the $CONTROL_HOST

1. setupNowcastUser.home -c -v -p $PROJ_DIR
As user nowcast on the $FIELD_DISPLAY_HOST

1. ln -s /nfs/ncar/rap/projects/<$PROJECT>/.cshrc
2. source ~/.cshrc
3. setupNowcastUser.home -f -v -p $PROJ_DIR
As user nowcast on all remaining hosts

1. ln -s /nfs/ncar/rap/projects/<$PROJECT>/.cshrc
2. source ~/.cshrc
3. setupNowcastUser.home -v -p $PROJ_DIR

ssh Authentication
The next step is to establish ssh authentication between all of the project machines. Because many of
the Auto-Nowcast process control scripts rely on ssh, it is necessary to establish ssh logins which do not
involve password prompting for user nowcast.
To set up ssh authentication you need to create two files: known_hosts and authorized_hosts and
distribute these files to each machine within the Auto-Nowcast system. Start by picking one host, we'll call
this <STARTING_HOST>:

1. Login to the <STARTING_HOST> host and create/edit the file $HOME/authorized_keys.tmp We will
generate host keys on each host and copy them to this temporary working file.

2. In another xterm, login to each host sequentially (including the <STARTING_HOST>) and do the
following:

! If asked, answer yes to the question:
Are you sure you want to continue connecting (yes/no)?

! Once you are logged on, run the command:
ssh-keygen -t dsa
(Use default filename and no passphrase.) This command will create the file $HOME/.ssh/id_dsa.pub

! cat $HOME/.ssh/id_dsa.pub
! copy and paste the output to the temporary file authorized_keys.tmp

For example, after running ssh-keygen on machine gauss the cat results will look like:
ssh-dss AAAAB3NzaC1kc3<...a long string of numbers and letters>== cnc@gauss

! Logout of the remote host so that you are back at the <STARTING_HOST>.
! In the temporary file authorized_keys.tmp, make another copy of the host key, modifying the machine

name to be a fully qualified domain name. For example,
ssh-dss AAAAB3NzaC1kc3<...a long string of numbers and letters>== cnc@gauss.rap.ucar.edu

3. After completing the above steps for each machine, including the <STARTING_HOST>, set the proper
file mode on the temporary authorized_keys.tmp file and copy it to all machines, including
the <STARTING_HOST>:

! chmod 600 $HOME/authorized_keys.tmp
! scp $HOME/authorized_keys.tmp <machineName>:$HOME/.ssh/authorized_keys
4. Now that you have logged onto each machine from the <STARTING_HOST>,

the <STARTING_HOST> should have a file $HOME/.ssh/known_hosts which contains host ids for
each machine in the autoNowcast system.

5. Edit this file, making a copy of each line, and modifying the machine name to be a fully qualified
domain name.

6. Finally, copy the modified known_hosts file to all other machines:
! scp $HOME/.ssh/known_hosts <machineName>:$HOME/.ssh/known_hosts

If password authentication is established correctly, you now should be able to ssh from machine to
machine without password prompting. Be sure to verify that this is the case or you will have problems
later with process control which will be very difficult to diagnose.
Now that each of the project machines has its $HOME directory and cross mounts setup, you should be
able to access the shared project space from any machine to make modifications to the project
configuration. Note that there are aliases in the installed .cshrc file to facilitate moving around within the
Auto-Nowcast configuration.

Modifying Process Control Files
The next set of files which need project-specific modifications are the process control files which will
eventually be installed in $HOME/controlLocal/runtime by the host_startup script and used for starting
up and shutting down the Auto-Nowcast environment. As user nowcast on any host in the system,
perform the following steps:

1. cd $CONTROL_DIR/params
2. Edit the file host_env.realtime and change the machine names to reflect the roles that were

determined in Hardware Requirements & Purchasing.
3. cd $CONTROL_DIR/proc_list
4. Edit all of the files in this directory to indicate which processes should be run on each of the logical

hosts. Each entry in a proc list must contain: application name, instance name, start script, kill script,
and host on which the application runs. In general the start scripts and kill scripts (other than the
general utilities snuff or snuff_inst) reside in one of the $PROJ_DIR/*Home/bin directories.

5. cd $CONTROL_DIR/crontab
6. Edit all of the files in this directory to indicate which cron jobs should be run on each of the logical

hosts.

Defining the Data Hierarchy
Now you must establish the data directory tree on each host. The required data directories will depend on
the algorithms which will be running operationally for the field project. As user nowcast on any host in the
system, perform the following steps:

1. cd $DATA_HOME/data_lists
2. Modify the files in this directory as necessary to specify the output datasets on each host.

The format of each entry in the the data list file is as follows:

<dataDirectoryPath> local | (link <linkDestination>) { <dataDirectoryParameterFile> }

Lines starting with a '#' are comment lines. These lines as well as blank lines are ingnored.

The <dataDirectoryPath> is the directory to be made. It specified relative to $RAP_DATA_DIR if the
directory path does not begin with a '/'. Directory paths beginning with '/' are treated as absolute rather
than being relative to $RAP_DATA_DIR.
The second entry is either local, indicating that the directory is local and a mkdir -p
$RAP_DATA_DIR/<dataDirectoryPath> is to be executed, or link indicating that the directory is a linked
to another directory using the ln -s <linkDestination> <dataDirectoryPath> command. NOTE!!(bug
needs a fix): The <linkDestination> needs to be an absolute path.
The optional series of <dataDirectoryParameterFile> specifies any run-time parameter files
from $DATA_HOME/params to be installed into the specified data directory. This presently includes
static files like terrain data files as well as param files from data managing applications. WORK TO BE
DONE!: The static Mdv terrain data files should be moved to a different directory
than $DATA_HOME/params since they arent paramter files and the script which installs them should
look for them in a "static_files" directory.
NOTE: These specific parameter files are for applications that operate on or manage data and are
specific to the data set therefore they reside with the data. The naming convention for for the parameter
file is _<Data Managing Application>.<function or identifying info>+<optional identifying
information> Note that the string following + will not appear as part of the filename when it is copied to
the data directory. It merely allows the user to distinguish one param file from another
in $DATA_HOME/params when the application is then same. Following are examples of applications
that manage or operate on data and and corresponding param files:

Applications that Manage or Operate on Data and Example Parameter Files

Application
Example Parameter Files Which Reside With the
Data

Role of Application

Bdry2Symprod _Bdry2Symprod.bdryDetect

Converts Spdb boundary products
into
format which can be rendered by
CIDD

Tstorms2Symprod _Tstorms2Symprod.35dbzStormsDetect

Converts Spdb Titan products
into
format which can be rendered by
CIDD

Ltg2Symprod _Ltg2Symprod.THOR

Converts Spdb lightning products
into
format which can be rendered by
CIDD

Metar2Symprod _Metar2Symprod.surface

Converts Spdb surface data
products into
format which can be rendered by
CIDD

Janitor

_Janitor+LogDir

_Janitor+FastDelete

_Janitor+KeepOut

Recurses through data directory
tree
and compresses and deletes
data.

DsFileDist

_DsFileDist+ncar2Mit

_DsFileDist+MitDisplay2ncarRelay Data distribution

DsSpdbServer

_DsSpdbServer.distrib+ncar2Mit

_DsSpdbServer.search+soundings

Spdb data distribution

Spdb data server

DsMdvServer

_DsMdvServer.static

_DsMdvServer.res1K Mdv data server

Once you have defined the necessary data directories and any associated parameter files, you are ready
to create the data directories and install the run-time parameter files.

Login as root on each host and perform the following steps:
1. mkdir /d1/fieldData
2. chown nowcast /d1/fieldData
3. chgrp shared /d1/fieldData
As user nowcast:

1. cd $RAP_DIR
2. cvs co make_include
3. cvs co make_bin
4. cd $RAP_SHARED_DIR
5. cvs co libs/perl5
6. cd /nfs/ncar/rapShared/libs/perl5/src
7. make install_shared
8. niwot_mkdata to create data dirs on every host or host_mkdata if you want to do each host

separately.

Check each host to see that the data directories were made properly and that the param files for the data
directories were installed.

Building Libraries & Applications
Create & Check in Project-Specific Make Files

1. Login as user nowcast on any project machine
2. cd $RAP_SHARED_DIR
3. cvs co libs/Makefile
4. cvs co apps/Makefile
5. cd /nfs/ncar/rapShared/libs
6. cp Makefile Makefile.<$PROJECT>
7. Change the contents of the project-specific make file Makefile.<$PROJECT> to include those libraries

which you want to build for the field project.
8. cd /nfs/ncar/rapShared/apps
9. cp Makefile Makefile.<$PROJECT>
10. Change the contents of the project specific make file Makefile.<$PROJECT> to include those

application trees which you want to build for the field project.
11. Check all of your project specific make files into cvs.
Checkout Source Code

1. cd $UTILS_HOME/bin
2. Change the contents of the file niwot_checkout to reflect the libraries and applications that were just

added to the project-specific make files.
3. niwot_checkout
4. Create project-specific make files within each of the application src subdirectories. Setting up these

application-level make files reduces the number of libraries that you will need to check out and compile
for the system and reduces the number of build errors that you are likely to encounter.

5. Check all of your project specific make files into cvs.
Now you are ready to build all of the software used by the Auto-Nowcast system. Because of library
dependencies, building the necessary software is often an iterative process. Once you start building the
code, you might identify missing libraries or apps and have to edit the Makefile.<$PROJECT> file for the
libraries, apps or modify the niwot_checkout script to include the software you need.
There are several scripts in the directory $UTILS_HOME/bin for building the software in various
combinations -- libraries only, applications only, with or without a cvs checkout, etc. Each of these scripts
relies on the underlying build script $NIWOT_DIR/niwot_build with varying command line options.
If you want to use the niowt build script to check out, build, and install your libraries and applications AND
you have already created your project specific makefiles, try niwot_build -m -bld -d. This will

1. install project specific makefiles
2. build and install the source code
3. print debug messages

If you want to do these steps by yourself and check the results of each step before moving on, you can
do the following:

Install Project-Specific Make Files
1. cd $RAP_SHARED_DIR

2. installMakefiles --project <$PROJECT>
Build the Software

Install includes:

1. cd $RAP_SHARED_DIR/incs
2. make install_shared
Build and install libraries:

1. cd $RAP_SHARED_DIR/libs
2. make install_shared_include
3. make opt install_shared
Build and install applications:

1. cd $RAP_SHARED_DIR/apps
2. cd tdrp; make install_shared
3. cd ../
4. make opt install_shared

Modifying Parameter Files
The next step in configuring the Auto-Nowcast environment is a fairly tedious one. It requires a large
number of parameter files and scripts to start the applications to be modified. This is a very critical step.
Although the applications may seem to run successfully, errors which are very difficult to diagnose later
on will indeed occur if the parameter files for each application are not modified correctly.
Radar Information files and radar_env.lookup
The radar_env.lookup is a file whose entries contain radar id/ host (of radar data) pairs and a key word
used to identify the pair. The file has has three different uses:

1. It is used by the host_startup script to generate host process lists. The lookup key word can be used
in the pre-processed process lists in $CONTROL_DIR/proc_list with the syntax of preceding and
following the key word by '?' symbol. At runtime, the key word will be replaced by the Radar Id. in the
runtime process list which is placed in $HOME/controlLocal/runtime.

2. It is used by application start scripts find radar id, or radar Id/radar host pairs. This enables parameter
files to be generic.

3. It is used by SysViewExpand to substitute radar id and radar data hosts into generic Sysview
diagrams.

Modify relavant param files and start scripts:
1. cd $CONTROL_DIR/params.
2. Modify $CONTROL_DIR/params/radar_env.lookup. Enter all radar id/radar data host pairs and a key

word for each pair.
3. cd $RADAR_HOME/bin.
4. Modify all start scripts that use radar_env.lookup. Generally these will have the suffix *.

radarLookup. Make sure that the proper keys are being set and used in the niwot perl library lookup
commands.

5. cd $CIDD_HOME/bin.
6. Similarly modify all start scripts that use radar_env.lookup.
Radar information param files are located in $RADAR_HOME/params. They set environment variables
specific to the radar including radar id, latitude, longitude, altitude and other variables. These files are
sourced by scripts which start applications that require radar specific information. This enables us to keep
the parameter files for such applications generic and reduce the number of paramter files that must be
maintained for a project using more than one radar data stream.

1. cd $RADAR_HOME/params
2. For each radar being used in your project, create a radar.<radar_id> param file. Note: The suffix of a

radar info filename should match the <radar_id> of a corresponding entry in radar_env.lookup. The
radar start scripts make the assumption that they will be the same. Also, There should be a one to one
correspondence between each entry in radar_env.lookup and the radar information files created
in$RADAR_HOME/params.

Configure Application Parameters
The application parameters which need to be modified vary depending on which applications are being
used for a particualar project. Perhaps the best way to approach this task is to methodically go through
each of the parameter files for each application in the autoNowcaster one by one, making sure to take a
look at each parameter to determine its role. In many cases a parameter will need to be tuned by the
scientists; in other cases a configuration change (like change in domain size, grid resolution, adding
another algorithm or deleting one) will necessitate a change in the parameters. Note:In general the
applications in the autoNowcaster contain a -print_params option. The command you would use to print
a param file with default parameter settings is <application name> -print_params >& <param file
name>
Build Project-Specific Map Database
Project maps are used by three different displays: CIDD, TITAN, and RDI. RAP's map database resides
in http://www.rap.ucar.edu/maps. Any maps required by the Auto-Nowcast field project should be
copied from the RAP database and installed in $PROJ_DIR/maps. Other maps specific to the new field
project will need to be fetched from outside sources or digitized.
Build Project-Specific CIDD Colorscale Database
The colorscale database for CIDD is $CIDD_HOME/colorscales. RAP's colorscale database resides
in http://www.rap.ucar.edu/colorscales. Any colorscales required for CIDD should be copied from the
RAP database and installed in $CIDD_HOME/colorscales. Colorscales specific to the new field project
might have to be created if not available in RAP's colorscale database.
Configure Data Distribution
Three applications which are useful for data distribution are DsSpdbServer for SPDB data, and
the DsFileDist / DsFCopyServer pair for MDV data. The parameter files for these servers should
ultimately reside in the directory containing the data to which they pertain. In configuring the distribution,
create the files in $DATA_HOME/params, add them to the proper data list
in $DATA_HOME/data_lists and they will be installed in the proper data directories
with host_mkdata or niwot_mkdata commands
Configure Data Compression and Scrubbing
The Janitor is an application which continually recurses through the data tree and is typically used for
compressing data files to save disk space and scrubbing those files determined to be old(a configurable
parameter for each data set) and not in a time window specified for saving data by
the $DATA_HOME/params/events_list. The run-time behavior of theJanitor is determined by the
parameter files that reside in the data tree. Typically the top level _Janitor param file is very complete
and specifies the entire set of Janitor application parameters. Lower level _Janitor files should contain
only those few parameters which differ from and override the upper level parameter settings. In
configuring _Janitor param files, create the files in $DATA_HOME/params, add them to the proper data
list in $DATA_HOME/data_lists and they will be installed in the proper data directories
with host_mkdata or niwot_mkdata commands.
Configure Data Servers To Run On Each Host

The four data service applications which typically run on all machines in the Auto-Nowcast system are:

1. DsServerMgr
2. DataMapper
3. Scout
4. Janitor
These applications typically appear in the process list
file $CONTROL_DIR/proc_list/EVERY_HOST.always so you shouldn't have to make any modifications
to enable these. You may, however, need to modify this approach if your system configuration includes
an exposed data relay host for data distribution where running DsServerMgr could be considered a
security risk.
If you are distributing data to/from an exposed host outside the firewall, you may want to run the server
manager in secure mode using: DsServerMgr -secure or avoid running DsServerMgr altogether to
minimize the risk of automatically starting up unexpected server processes. Instead of running the server
manager you could use the exposed host strictly as a data relay machine and limit the use of that
machine to the following processes maintained by auto_restart :

1. DsFileDist
2. DsFCopyServer
3. DsSpdbServer
4. Janitor
5. auto_restart
If you take this approach of explicitly running the Ds-applications via the auto restarter, then you might
need to modify the process list for EVERY_HOST.always and take out DsServerMgr,
DataMapper, Scout, and Janitor and add them to the process lists on a host by host basis.
Setup Nightly Status Email Lists

1. cd $CONTROL_DIR/params
2. Change the email addresses in the file email.list. These email addresses will receive two nightly

emails:
1. 24-hour summary of the process control status
2. machine status on uptime, disk space, and memory usage

3. cd $CONTROL_DIR/crontab. Edit the CONTROL_HOST crontab file and add the following:

Run the reliability statistics once a day. This should be
run on the CONTROL HOST (atNcar), just after midnight.

01 00 * * * csh -c "niwot_status >& /dev/null"

Run the host machine status check once a day

59 23 * * * csh -c "query_hardware_status >&/dev/null"

Setting up a System Monitor
At this point everything should be in place for developing a complete SysView diagram of the system
configuration. If the SysView diagram has not already been developed for planning purposes, it is a very
good idea to put one together for system documentation and realtime monitoring.
As user nowcast:

1. cd $SYSVIEW_HOME/bin/sysview2
2. java -jar sysview2.jar
3. Create diagrams for each $HOST and save these diagrams in $SYSVIEW_HOME/diagrams.
Note: You can use nowcast environment variables in your application hosts and data paths. You must
write your environment variables with added parenthesis as displayed in the following
example: $INGEST_HOST must be written $(INGEST_HOST). You can also substitute lookup key words
for radar ids from the $CONTROL_DIR/params/radar_env.lookup. You must write these variables with
added ? as displayed in the following example: key word radar1 must be written ?radar1?. All these
variables will be resolved by a program called SysViewExpand which will be executed when you
run SysView with the command run_Sysview.
Also note that SysView relies on the DataMapper application to get information in realtime about the
datasets on various hosts. Therefore you must be running the DataMapper on hosts for which you want
information about the local data.

Ready, Set, Go...

By now the Auto-Nowcast system should be ready to begin testing the startup and shutdown procedures.
This step will let you know if you have properly set up the start scripts, parameter files, process lists, data
directories, etc.

A prudent approach to testing components of the system would be to manually start each application as
you complete configuration of its parameter file. If you are feeling more daring, you can start up
processes along with the auto-restartservices.

To start up a single machine in the system:

1. login as user nowcast on the machine of interest
2. host_startup realtime

If you want to be brave and kick off the whole system at once:

1. login as user nowcast on the $CONTROL_HOST
2. niwot_startup realtime
When starting the whole system via niwot_startup, you should see each of the project hosts reporting
back to the console window of the $CONTROL_HOST as they startup.

The corresponding commands for shutting down the Auto-Nowcast system are:

host_shutdown and niwot_shutdown

Some tools you can use to determine if your hosts started up properly are:

1. print_procmap -up -hb -c 5
This will tell you all of the processes which are registering with the process mapper called procmap .
Make sure that all of the processes which should be running are showing up in this list.

2. Use tail -f $CONTROL_LOCAL_DIR/runtime/auto_restart.log
to see which process keep restarting on the host. This indicates that there is a problem with the start

script, the param file for the application, perhaps the instance name in the process list doesnt match
the one in the start script, or the application executable is missing.

3. Execute run_Sysview (assuming your SysView diagrams are set up properly).

Freezing the Source Code
At some point once you are satisfied with the basic workings of the Auto-Nowcast applications, you will
have to do a code freeze. This amounts to doing one final CVS checkout and build of all the software as
described in Building Libraries & Applications. There's probably a lot that could be said here about both
the importance and the potential pitfalls of a code freeze. Suffice it to say:

1. Don't wait until the day before you start Packaging up the Field Project before you do a code freeze.
2. Be circumspect when accepting any new code after the code freeze.
IMPORTANT: Once you are certain that no further updates or changes will be incorporated into the
source code, mirror the libraries and applications (source and binaries) from the machine which is hosting
the Shared Project Space to the $FIELD_SUPPORT_HOST. Maintaining a copy of the frozen source
code which is operating in the field will allow you to debug and possibly correct software bugs which arise
during operations without doing a full software upgrade during the field season.

Packaging up the Field Project
Switch to the Field Host Names and IP Addresses

If you have been doing a setup at RAP on the actual field machines that are to be shipped out into the
field, only the domain name and IP addresses of the machines will change. The hostnames should not
change. In this case you will only need to update those project files in which domain names were
specified:

1. Change the system domain name and IP address.
2. Reconfigure the second ethernet card of the $INGEST_HOST for the new IP address.
3. Change the file $PROJ_DIR/.shosts to the new domain name.

If instead of setting up the Auto-Nowcast system on the actual field machines, you have been doing a
"mock-up" using various machines around RAP, all of the explicit hostnames in the project files will have
to be changed in addition to the domain name and IP address changes made above.

In most cases, logical hostnames are used via UNIX environment variables. However, in some project
files explicit hostnames must be specified. Refer to Modifying Parameter Files for the most complete
explaination of the project files which should be examined. A quick list of the files in which explicit
hostnames might be used include:

1. $HOME/.fvwmrc.*
2. $CONTROL_DIR/params/host_env.*
Do Final CVS Checkin of the Project

1. cd $PROJ_DIR
2. cvs -n update
3. cvs commit
Burn a CD-ROM of the Project

On at least one occasion, a PC has been shipped from RAP and has gone missing in the mail. This is
particularly awkward when the machine in question has all the frozen source code and/or executable files

on it. It is a good idea to write all the executables, the binary libraries, the applications source tree and the
library source tree to a CD-ROM for backup purposes.

Make Final System Changes
1. BE SURE to remove any local cross mounted file systems!
2.
3. Switch from DNS lookup to host table lookup. The system's administrators don't necessarily like to do

this, but have 'em do it anyway!!!

At the Field Site

1. Make sure ssh authentication still works with the new domain name. See Modifying & Installing .dot
Files for a brief explaination of ssh authentication.

2. Make sure the cross mounts are set up properly for the Shared Project Space.
3. Make sure that the NTP (network time protocol) service is working properly for all machines.
4. Change the nowcast user password to a project-specific external password. Do NOT use the internal

password for user nowcast on the project machines out in the field.
5. On the LDM servers, change the pqact.conf to point to the field project radars!
6. If you are maintaining previous season data, you may need to merge the previous data into the current

data directory structure.

Monitoring	
Daily Checklist
Weekly Checklist

Daily Checklist

On a daily basis, the operator should perform the following tasks:

1. Check disk and memory usage
2. Check process status from the previous day
3. Check current process status
4. Check current data status
5. Monitor the system
6. Check email from cron jobs
7. Check data archiving mechanism
Check disk and memory usage

The various Auto-Nowcast Hosts must have sufficient disk and memory available to run the Auto-
Nowcast Environment processes and store data files.

On a daily basis, a utility called niwot_status is run on $CONTROL_HOST to check the disk usage,
uptime, and memory statistics on all the Auto-Nowcast Hosts. The results are emailed to addresses
in $CONTROL_DIR/params/email.list. The status script is run nightly as a crontab job. If you want to
receive daily mail regarding the status of the Auto-Nowcast Hosts, add your email address to the email
list file.
For any Auto-Nowcast Host you can check the disk usage and memory usage at any time. The UNIX
command df is used for checking disk usage. To check memory usage, either run top or cat
/proc/meminfo.
Check process status from the previous day
On a daily basis, a utility called query_hardware_status is run to check process status for the day. The
results are emailed to addresses in $CONTROL_DIR/params/stats_email.list. The status script is run
nightly as a crontab job. If you want to receive daily mail regarding the daily process status, add your
email address to the email list file.
The process status files are also date/time stamped and stored on the $CONTROL_HOST. To check the
process status from a particular day, examine the corresponding file
in $RAP_DATA_DIR/$PROJECT/other/reliability_stats/YYYYMMDD_procmap.stats. Keep in mind
that the process status files get scrubbed by the Janitor along with other files and datasets in the Auto-
Nowcast Environment.
Check current process status
SysView monitors the status of the Auto-Nowcast Environment datasets and processes. The User's
Manual for SysView can be downloaded in *.pdf format. The procmap is also a useful utility to monitor the
status of a given host in the Auto-Nowcast Environment.

If you suspect problems with any of the processes, see the Process Control FAQ for suggestions on
diagnosing and correcting the problems.

Check current data status
SysView monitors the status of the Auto-Nowcast Environment datasets and processes. SysView can be
downloaded in *.pdf format.

If you suspect problems with any of the datasets, see the Data Ingest & Management FAQ for
suggestions on diagnosing and correcting the problems.

Check email from cron jobs
To check the results from any cron jobs that are running at your installation, read the email for the
nowcast user on the $CONTROL_HOST. Most cron jobs are run near midnight, so checking email every
morning is a good practice.
Check data archiving mechanism

Weekly Checklist

On a weekly basis, the operator should perform the following tasks:

1. Update the events list
2. Backup data to tape
Update the events list
Update the meterologically interesting case dates in the file $DATA_HOME/params/events.list. The
cases in this file will not be scrubbed off the disk by the Janitor off the disk.
Backup data to tape or utilize other archiving mechanism

Data	Architecture	
RAL Internal Data Formats
RAL Data Directory Structure

Data Sources

The availability of various data sources at a particular Auto-Nowcast Environment installation will dictate
the number and types of algorithms that can be run. The minimum data required for the Auto-Nowcast
Environment is NEXRAD radar data. A typical configuration for the Auto-Nowcast Environment might
include the folowing input data streams:

! NEXRAD radar data

! Satellite data

! Soundings

! Surface observations

Although the mechanism for acquiring the various external data sources may vary from one Auto-
Nowcast Environment installation to another, the data must conform to data formats know to the
applications in the Auto-Nowcast Environment.

RAL Internal Data Formats
1. MDV (or Meteorogical Data Volume): This is 3D or 2D gridded data. For example radar data volumes

are stored in MDV format. Terrain data is stored in Mdv format.
2. SPDB (or Symbolic Product Data Base): This is a format for point data. For example, Lightning data

and surface observations are stored in SPDB format. Titan storms can be converted to SPDB format.
3. FMQ (or File Message Queue): This is not so much of a data type but a fixed size file which which

applications can use to exchange data of any type or messages. Some of our applications read and
write data to and from these circular queues and therefore they are managed with our data.

4. titan storm track: This is the output format of storms generated by TITAN.
5. DsRadar: This is RALs format for radar beam data.

RAL Data Directory Structure
The head of data heirarchy at RAP is $RAP_DATA_DIR. This is an environment variable which is set in
the project .cshrc. The data servers which read and write data for the applications will assume all data
paths that do not begin with a '/' are relative to $RAP_DATA_DIR and all data paths that begin with a '/'
are absolute paths.
Under $RAP_DATA_DIR, data is divided by type. For example, typical subdirs
of $RAP_DATA_DIR might include:
! fmq
! mdv
! raw
! spdb
! titan

fmq directory and file structure:

The fmq directory contains the File Message Queues which have suffix .buf and corresponding .stat file.
Typical FMQ files have the following paths relative to $RAP_DATA_DIR:
fmq/<fmq name>.buf
fmq/<fmq name>.stat
mdv directory and file structure:
mdv subdirectories are further divided by dataset name, and date. The dataset filename is the valid time
of the data in hours, minutes and seconds. Following is the structure of an MDV dataset path relative
to $RAP_DATA_DIR:
mdv/<data set name>/yyyymmdd/hhmmss.mdv
raw directory and file structure:
raw or sometimes called other subdirectories are further divided by dataset name but the rest of the
directory structure depends on the raw data andits format.
spdb directory and file structure:
spdb subdirectories are further divided by dataset name and these directories contain the database files.
The files are separated by day with basename yyyymmdd and for each day there is a *.data file and
a *.index file. The database files for one day have the following paths relative to $RAP_DATA_DIR:
spdb/<data set name>/yyyymmdd.data and
spdb/<data set name>/yyyymmdd.index.
titan directory and file structure:
titan subdirectories are further divided by dataset name and these directories contain the database files.
The files are separated by day with basename yyyymmdd and for each day there is a *.sd5 file,
a *.sh5 file, *.td5 file, and a *.th5file. The database files for one day have the following paths relative
to $RAP_DATA_DIR:
titan/<data set name>/yyyymmdd.sd5
titan/<data set name>/yyyymmdd.sh5
titan/<data set name>/yyyymmdd.td5
titan/<data set name>/yyyymmdd.th5

All data files in the Auto-Nowcast Environment are timestamped based on UTC, a.k.a, GMT time.

Procmap	and	the	Auto–restarter	
The process mapper, a.k.a. PROCMAP, is a program which stores state information on the
processes which are currently running in the Auto–Nowcast Environment. The procmap
window (shown below) displays the current process status.

Each line in the procmap window identifies a separate process in the Auto-Nowcast
Environment.

� In the Name column is a list of the executables (or applications) which make up the
Auto–Nowcast Environment.

� Instance is an additional descriptor which allows for unique identification of the
executable processes. For example, the MDV_server appears multiple times in the
process mapper, but the instance name distinguishes between each MDV_server by
indicating on which dataset the server is operating.

� The Host column identifies the machine on which the process is running. It is useful to
note that the procmap window orders processes alphabetically by host name first,
then by executable name on each host.

� The User column indicates the login name under which a process is running. Since the
Auto–Nowcast Environment is operated under the "nowcast" account, that username
will appear for all of the processes.

� The Pid is the UNIX process identifier in the operating system's process table.
� Heartbeat indicates the length of time since the process last registered with procmap.

Processes are configured to register once every minute.
� Uptime shows the length of time since the process was last restarted.

PROCMAP works together with the auto–restarter to keep processes up and running in the
Auto–Nowcast Environment. The role of the auto–restarter is to make sure that all of the
required processes are running and registering a regular heartbeat with the process
mapper. Any process which is missing from the procmap or which has not registered a
recent heartbeat is killed and restarted by the auto–restarter.
The auto–restarter makes a full check of the process list every minute. Any process which
gets restarted is entered into a log file which is summarized nightly and mailed to the
operator for daily maintenance checks.
	

