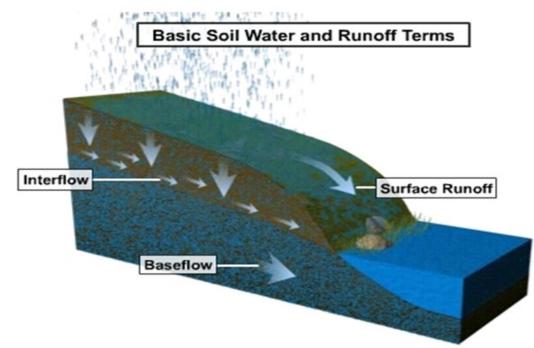
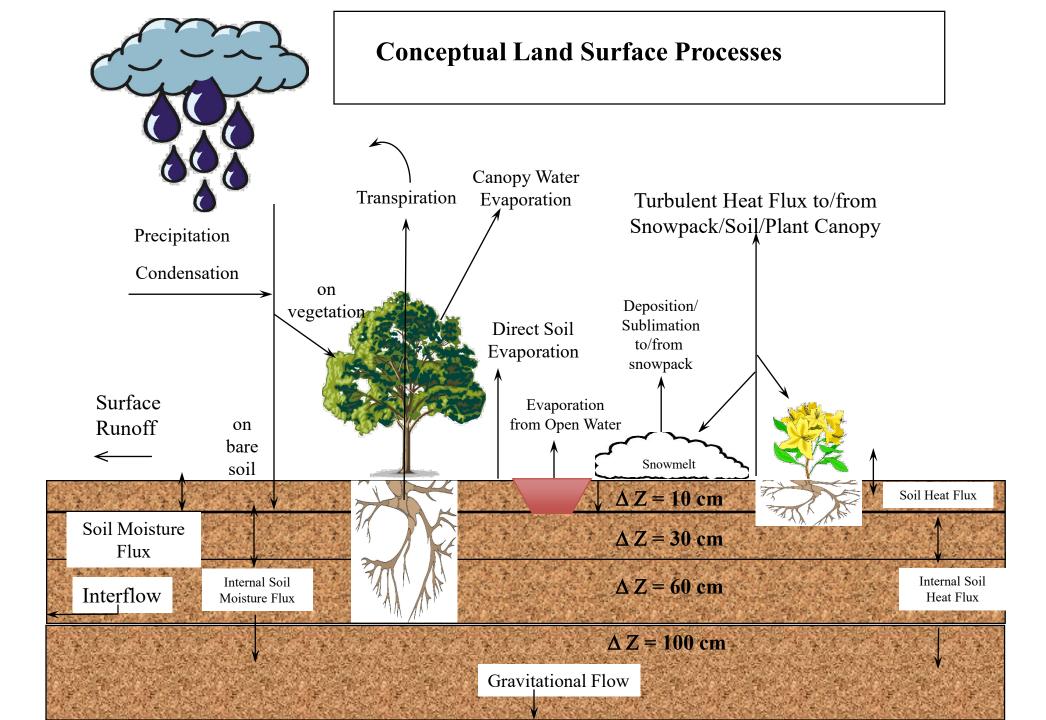
The Noah-MP Land Surface Model


Research Applications Laboratory National Center for Atmospheric Research


Land Surface Models: Summary

- Land surface models have long been used as stand-alone ecohydrology models or as boundary conditions for atmospheric and hydrology models
- Land surface models exist within a wide spectrum of complexity but all generally attempt to accomplish the same thing: partitioning of energy and water stores/fluxes (at many timescales)
- Land surface models can be broken down into two parts:
 - Physics: approximating the complex real world by a set of physically-based (hopefully) equations
 - Parameters: adapts the approximated physics to work for heterogeneous surfaces (vegetation/soil/etc.)
- More complex physics tends to produce more parameters
- Current generation LSMs aim to
 - improve surface representation especially when significant heterogeneities exist
 - provide land process-level information to an expanding user base
 - test multiple process representations in one model

Land Surface Models: One Piece of a Larger Modeling System

- Land surface models, as an upper boundary of a soil hydrology model, take:
 - Precipitation and partition into fluxes (evapotranspiration, surface/underground runoff) and storage (soil moisture and snowpack)
 - Solar and atmospheric energy and partition in fluxes (ET, sensible heat, ground/snow heat) and storage (snow/soil heat content)
- Models are generally 1D.

Noah-MP: A Community Land Model

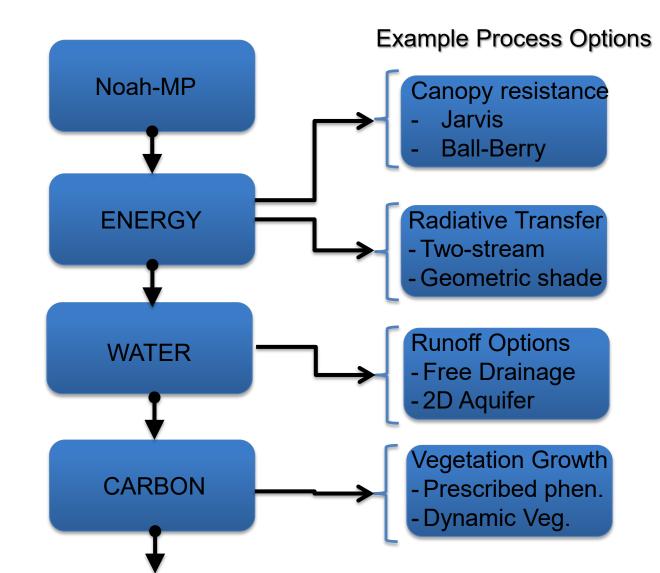
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D12109, doi:10.1029/2010JD015139, 2011

The community Noah land surface model with multiparameterization options (Noah-MP):

1. Model description and evaluation with local-scale measurements

Guo-Yue Niu,^{1,2} Zong-Liang Yang,¹ Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Anil Kumar,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Enrique Rosero,^{1,7} Mukul Tewari,⁴ and Youlong Xia³

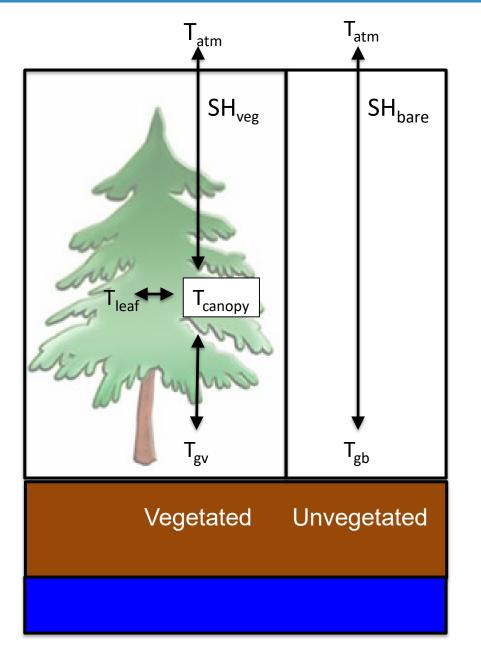
Received 4 October 2010; revised 3 February 2011; accepted 27 March 2011; published 24 June 2011.


The community Noah land surface model with multiparameterization options (Noah-MP):

2. Evaluation over global river basins

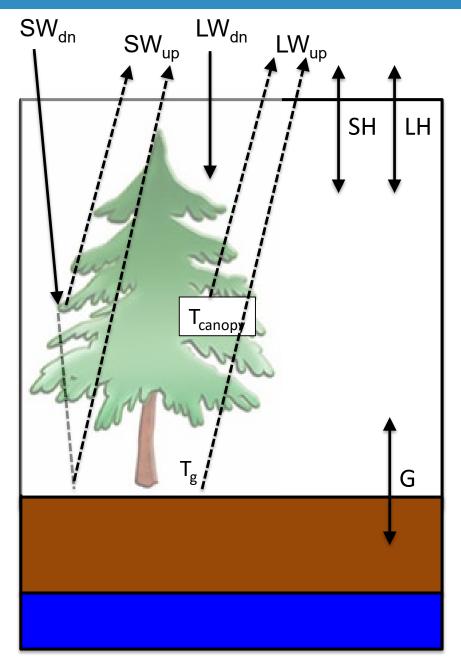
Zong-Liang Yang,¹ Guo-Yue Niu,^{1,2} Kenneth E. Mitchell,³ Fei Chen,⁴ Michael B. Ek,³ Michael Barlage,⁴ Laurent Longuevergne,⁵ Kevin Manning,⁴ Dev Niyogi,⁶ Mukul Tewari,⁴ and Youlong Xia³

Received 4 October 2010; revised 4 February 2011; accepted 25 March 2011; published 24 June 2011.


Noah-MP Calling Structure: Modularity at the Process Level

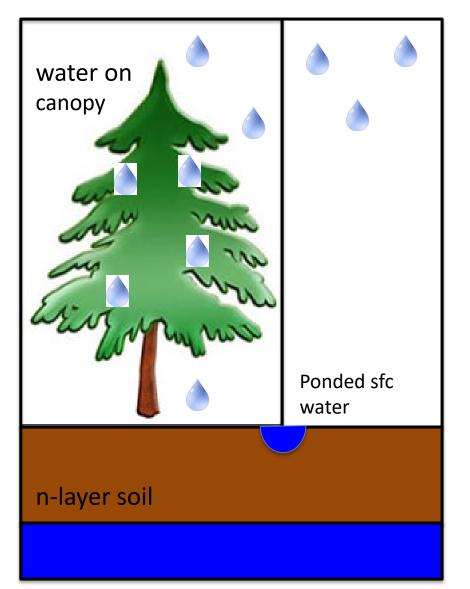
Noah-MP Physical Processes

Noah-MP is a land surface model that allows a user to choose multiple options for several physical processes


- Canopy radiative transfer with shading geometry
- Separate vegetation canopy
- Dynamic vegetation
- Vegetation canopy resistance
- Multi-layer snowpack
- Snowpack liquid water retention
- Simple groundwater options
- Snow albedo treatment
- New frozen soil scheme
- New snow cover

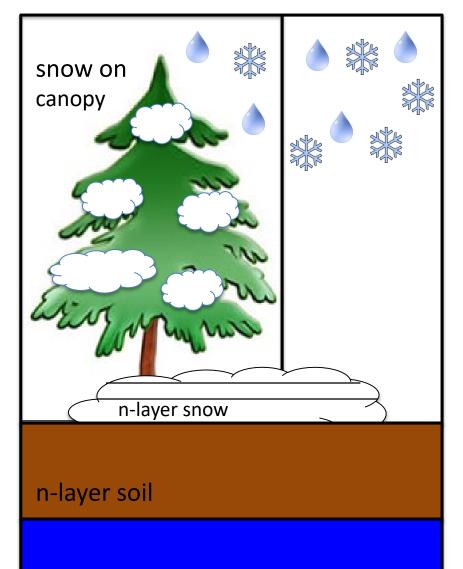
Noah-MP Surface Energy Budget

$$\begin{split} SW_{dn} &- SW_{up} + LW_{dn} - LW_{up} \ (T_{sfc}) \\ &= SH(T_{sfc}) \ + LH(T_{sfc}) \ + G(T_{sfc}) \end{split}$$


 SW_{dn} , LW_{dn} : input shortwave and longwave radiation (external to LSM) SW_{up} : reflected shortwave (albedo) LW_{up} : upward thermal radiation SH : sensible heat flux LH : latent heat flux (soil/canopy evaporation, transpiration) G : heat flux into the soil

Noah-MP Physical Processes

Noah-MP is a land surface model that allows a user to choose multiple options for several physical processes


- Canopy radiative transfer with shading geometry
- Separate vegetation canopy
- Dynamic vegetation
- Vegetation canopy resistance
- Multi-layer snowpack
- Snowpack liquid water retention
- Simple groundwater options
- Snow albedo treatment
- New frozen soil scheme
- New snow cover

Noah-MP Physical Processes

Noah-MP is a land surface model that allows a user to choose multiple options for several physical processes

- Canopy radiative transfer with shading geometry
- Separate vegetation canopy
- Dynamic vegetation
- Vegetation canopy resistance
- Multi-layer snowpack
- Snowpack liquid water retention
- Simple groundwater options
- Snow albedo treatment
- New frozen soil scheme
- New snow cover

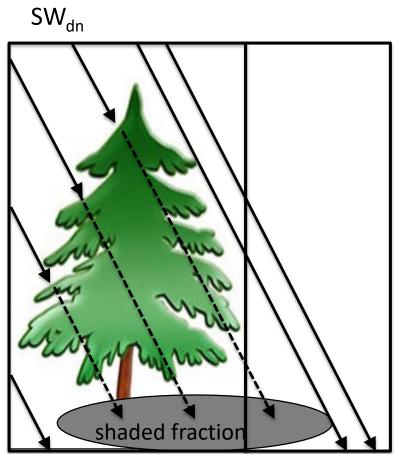
Noah-MP: Soil Water/Energy Transfer

Soil Moisture

$$\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial z} \left(D \frac{\partial \theta}{\partial z} \right) + \frac{\partial K}{\partial z} + F_{\theta}$$

- Richards Equation for soil water movement
- *D*, *K* are functions of soil texture and soil moisture)
- F_{θ} represents sources (rainfall) and sinks (evaporation)

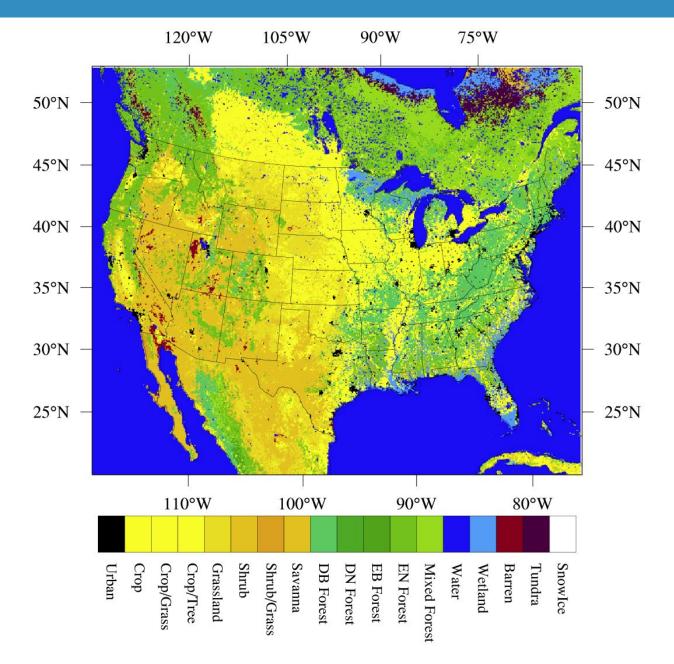
Soil/Snow Temperature


$$C(\theta)\frac{\partial T}{\partial t} = \frac{\partial}{\partial z}\left(K_t(\theta)\frac{\partial T}{\partial z}\right)$$

- C, K_t are functions of soil texture and soil moisture
- Soil temperature information used to compute ground heat flux

Noah-MP: More Physics, More Parameters

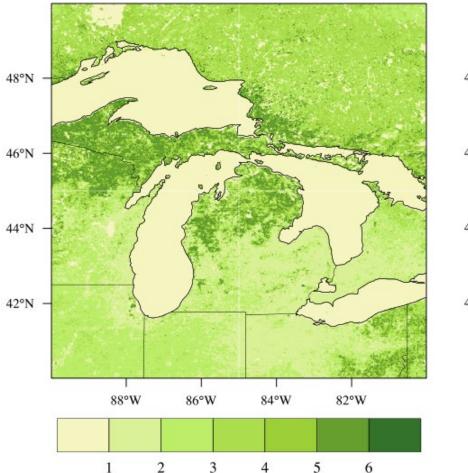
Noah-MP has a separate canopy and uses a two-stream radiative transfer treatment through the canopy


- Canopy parameters:
 - Canopy top and bottom
 - Crown radius, vertical and horizontal
 - Vegetation element density,
 i.e., trees/grass leaves per unit area
 - Leaf and stem area per unit area
 - Leaf orientation
 - Leaf reflectance and transmittance for direct/diffuse and visible/NIR radiation
- Multiple options for spatial distribution
 - Full grid coverage
 - Vegetation cover equals prescribed fractional vegetation
 - Random distribution with slant shading

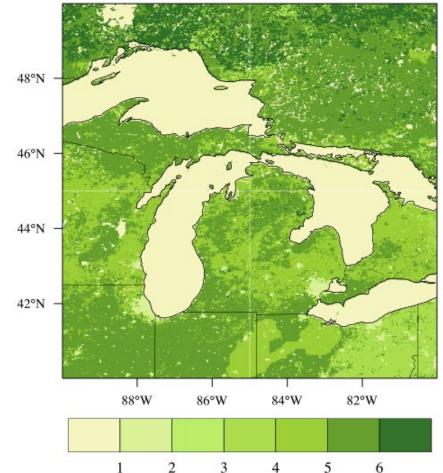
Key Input into the Noah-MP LSM

- Land-cover/vegetation classification
 - Many sources, generally satellite-based and categorically broad
- Soil texture class
 - Also general with large consolidations
- Many secondary parameters that can be specified as function of the above

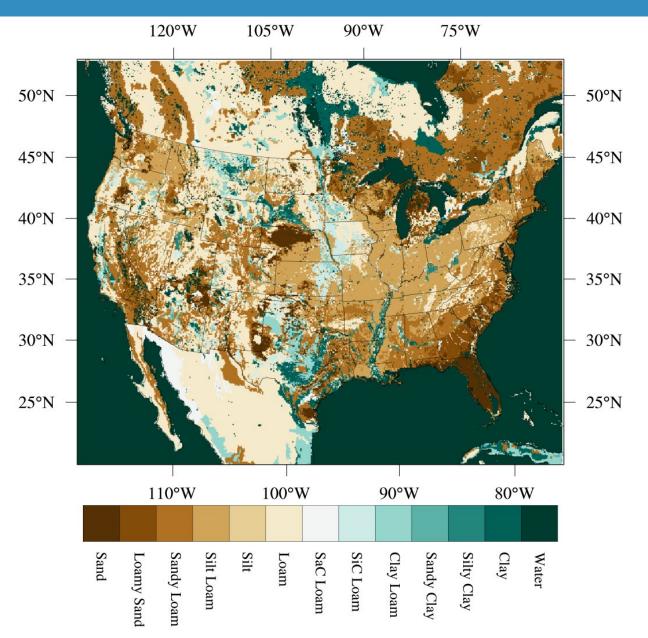
Datasets: NLCD Land Cover


Parameters: Land Cover

MPTABLE.TBL contains a look- up table for vegetation classes	!! ! CH2OP = 0.1, DLEAF = 0.04, ZOMVT = 1.00, HVT = 15.0, HVB = 1.00, DEN = 0.01, RC = 1.00, MFSN0 = 2.50, ! Row 1: Vis ! Row 2: Near RHOL VIS=0.00,	2 0.1, 0.04, 0.15, 2.00, 0.10, 25.0, 0.08, 2.50, IR 0.11,	0.15, 0 2.00, 2 0.10, 0 25.0, 2 0.08, 0 2.50, 2	0.15, 2.00, 0.10, 25.0, 0.08, 2.50,	5 0.1, 0.24, 0.14, 1.50, 0.10, 25.0, 0.08, 2.50, 0.11,	6 0.1, 0.04, 0.50, 0.15, 25.0, 0.08, 2.50, 0.11,	7 0.1, 0.04, 0.12, 1.00, 0.05, 100., 0.03, 2.50, 0.11,	8 0.1, 0.04, 0.06, 1.10, 0.10, 10.0, 0.12, 2.50, 0.07,	9 0.1, 0.04, 0.09, 1.10, 0.10, 10.0, 0.12, 2.50, 0.10,	10 0,1, 0,04, 0,50, 10.0, 0,10, 0,02, 3.00, 2.50, 0,10,	11 0.1, 0.80, 16.0, 11.5, 0.10, 1.40, 2.50, 0.10,	12 0,1, 0,04, 0,85, 18,0, 7,00, 0,28, 1,20, 2,50, 0,07,	13 0.1, 0.04, 1.10, 20.0, 8.00, 0.02, 3.60, 2.50, 0.10,	14 0.1, 0.04, 1.09, 20.0, 8.50, 0.28, 1.20, 2.50, 0.07,	15 0.1, 0.04, 0.80, 16.0, 0.10, 1.40, 2.50, 0.10,	16 0.1, 0.04, 0.00, 0.00, 0.01, 0.01, 2.50, 0.00,	17 0.1, 0.24, 0 0.50, 1 0.05, 0 10.0, 0 0.10, 1 2.50, 2 0.11, 0
Limitations:	RHOL_NIR=0.00, ! Row 1: Vis ! Row 2: Near RHOS_VIS=0.00, RHOS_NIR=0.00,	0.58, IR 0.36, 0.58,	0.36, (D.36,	0.58, 0.36, 0.58,	0.58, 0.36, 0.58,	0.58, 0.36, 0.58,	0.35, 0.16, 0.39,	0.45, 0.16, 0.39,	0.45, 0.16, 0.39,	0.45, 0.16, 0.39,	0.35, 0.16, 0.39,	0.45, 0.16, 0.39,	0.35, 0.16, 0.39,	0.45, 0.16, 0.39,	0.00, 0.00, 0.00,	0.58, 0 0.36, 0 0.58, 0
All pixels with the same vegetation have	! Row 1: Vis ! Row 2: Near TAUL_VIS=0.00, TAUL_NIR=0.00, ! Row 1: Vis ! Row 1: Vis ! Row 2: Near TAUS_VIS=0.00,	0.07, 0.25, IR 0.220,	0.25, (0.220, 0.	D.25, .220, O													
the same parameters	TAUS_NIR=0.00, XL = 0.000, ! CWPVT = 3.0 CWPVT = 0.18, C3PSN = 1.0, KC25 = 30.0, AKC = 2.1, KO25 = 3.E4,	-0.30,	-0.30, -(3.0, 0.18, 1.0, 30.0, (2.1,	D.30, - 3.0, 0.18 1.0, 30.0, 2.1,	0.30, · 3.0,	-0.30, 3.0,	-0.30, 3.0,					0.010, 3.0,	0.010, 3.0,	0.010, 3.0,			0.380, 0. -0.30, 0. 3.0, 0.18, 1.0, 30.0, 3 2.1, 3.E4, 3
Modifying	AK0 = 1.2, AVCMX = 2.4, AQE = 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,	1.2, 2.4, 1.0,
parameters affects all vegetation of the same type	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1,2,\\ 0,50,\\ 0,20,\\ 1,00,\\ 0,20,\\ 273,\\ 80,0,\\ 278,\\ 2,78,\\ 2,78,\\ 2,78,\\ 0,00,\\ 0,10,\\ 0,00,\\ 1,5,\end{array}$	0.20, (1.40, : 80, (273, 2.53, 2 9., (0.10, (0.10, (2.0, (1.45, 80, 273, 80.0, 278, 278, 2.E3, 9., 0.06, 0.10,	$\begin{array}{c} 1.2,\\ 0.35,\\ 0.20,\\ 1.45,\\ 80,\\ 0.20,\\ 273,\\ 60.0,\\ 278,\\ 9.,\\ 0.06,\\ 0.10,\\ 2.0,\\ 1.5,\\ \end{array}$	$\begin{array}{c} 1.30,\\ 0.20,\\ 0.20,\\ 1.45,\\ 80,\\ 0.20,\\ 273,\\ 70.0,\\ 278,\\ 2.E3,\\ 9.,\\ 0.06,\\ 0.10,\\ 0.00,\\ 2.0,\\ 1.5,\\ \end{array}$	$\begin{array}{c} 0.50,\\ 0.20,\\ 0.10,\\ 1.80,\\ 0.20,\\ 273,\\ 40.0,\\ 278,\\ 2.E3,\\ 9.,\\ 0.06,\\ 0.10,\\ 1.20,\\ 1.5,\\ \end{array}$	0.65, 0.20, 0.26, 60, 0.20, 273, 40.0, 278, 2.E3, 9., 0.06, 0.10, 0.00, 1.5,	0.70, 0.50, 0.20, 60, 0.20, 273, 40.0, 278, 2.E3, 9., 0.06, 0.10, 0.00, 1.5,	$\begin{array}{c} 0.65,\\ 0.50,\\ 0.50,\\ 0.80,\\ 50,\\ 0.20,\\ 273,\\ 40.0,\\ 273,\\ 40.0,\\ 2.E3,\\ 9.,\\ 0.06,\\ 0.32,\\ 0.01,\\ 2.0,\\ 1.5, \end{array}$	0.55, 0.60, 3.00, 20, 273, 60.0, 278, 2.E3, 9., 0.06, 0.10, 0.01, 1.5,	0,2, 1,80, 0,20, 4,00, 80, 0,10, 268, 60,0, 268, 61,0, 268, 61,0, 268, 61,0, 268, 61,0, 268, 61,0, 268, 61,0, 2,5, 1,	0.55, 0.50, 4.00, 0.65, 80, 0.20, 273, 60.0, 273, 60.0, 2.E3, 9., 0.06, 0.30, 0.05, 2.0, 1.5,	0.5, 1.20, 0.20, 3.00, 265, 50.0, 2.E3, 6., 0.06, 0.90, 2.6, 1.5,	0.5, 0.80, 0.20, 80, 0.10, 268, 55.0, 2.63, 9., 0.06, 0.80, 0.80, 2.5, 1.5,	0.0, 0.00, 0.00, 0.00, 0.00, 0,00, 0,00, 1.E15, 9., 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$


MODIS 1km Leaf Area Index Climatology

- Vegetation varying in time and space
- Comparison of MODIS LAI to default table-based LAI

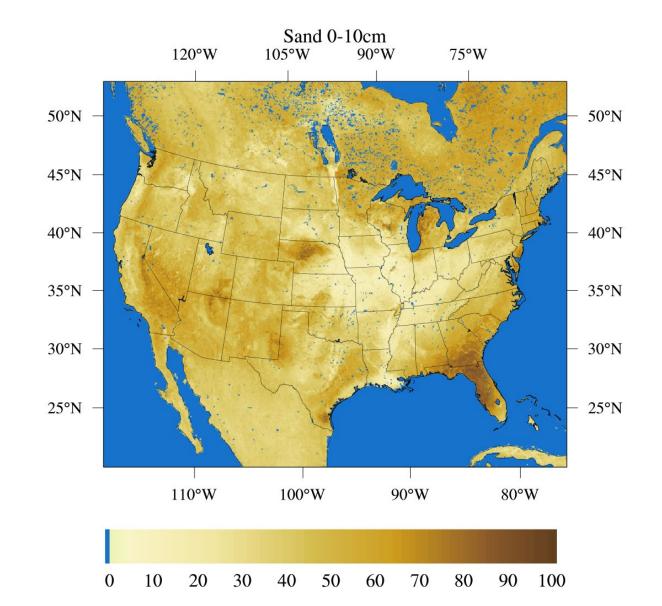

Great Lakes: MODIS July LAI 1000m

Great Lakes: Table July LAI

Datasets: Soil Texture

Parameters: Soil Texture

Soil Parameters													
STAS 19,1	'BB	DRYSMC	F11	MAXSMC	REFSMC	SATPSI	SATDK	SATDW	WLTSMC	0TZ			
1,	2.79,	0.010,	-0.472,	0.339,	0.236,	0.069,	4.66E-5,	0.608E-6,	0.010,	Ò.92,	'SAND'		
2,	4.26,	0.028,	-1.044,	0.421,	0.383,	0.036,	1.41E-5,	0.514E-5,	0.028,	0.82,	'LOAMY SAND'		
З,	4.74,	0.047,	-0.569,	0.434,	0.383,	0.141,	5.23E-6,	0.805E-5,	0.047,	0.60,	'SANDY LOAM'		
4,	5.33,	0.084,	0.162,	0.476,	0.360,	0.759,	2.81E-6,	0.239E-4,	0.084,	0.25,	'SILT LOAM'		
5,	5.33,	0.084,	0.162,	0.476,	0.383,	0.759,	2.81E-6,	0.239E-4,	0.084,	0.10,	'SILT'		
6,	5.25,	0.066,	-0.327,	0.439,	0.329,	0.355,	3.38E-6,	0.143E-4,	0.066,	0.40,	'LOAM'		
7,	6.77,	0.067,	-1.491,	0.404,	0.314,	0.135,	4.45E-6,	0.990E-5,	0.067,	0.60,	'SANDY CLAY LOAM'		
8,	8.72,	0.120,	-1.118,	0.464,	0.387,	0.617,	2.03E-6,	0.237E-4,	0.120,	0.10,	'SILTY CLAY LOAM'		
9,	8.17,	0.103,	-1.297,	0.465,	0.382,	0.263,	2.45E-6,	0.113E-4,	0.103,	0.35,	'CLAY LOAM'		
10,	10.73,	0.100,	-3.209,	0.406,	0.338,	0.098,	7.22E-6,	0.187E-4,	0.100,	0.52,	'SANDY CLAY'		
11,	10.39,	0.126,	-1.916,	0.468,	0.404,	0.324,	1.34E-6,	0.964E-5,	0.126,	0.10,	'SILTY CLAY'		
12,	11.55,	0.138,	-2.138,	0.468,	0.412,	0.468,	9.74E-7,	0.112E-4,	0.138,	0.25,	'CLAY'		
13,	5.25,	0.066,	-0.327,	0.439,	0.329,	0.355,	3.38E-6,	0.143E-4,	0.066,	0.05,	'ORGANIC MATERIAL'		
14,	0.0,	0.0,	0.0,	1.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.60,	'WATER'		

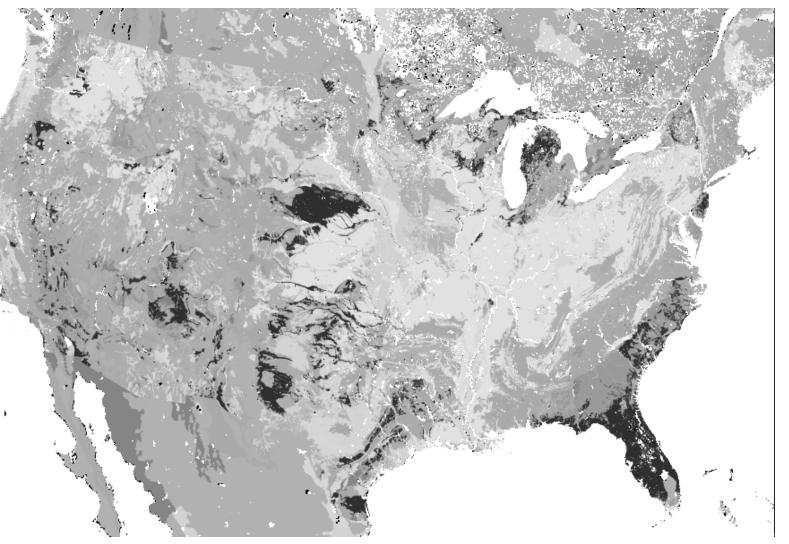

SOILPARM.TBL contains a look-up table for soil texture classes

Limitations:

All pixels with the same soil type have the same parameters

Modifying parameters affects all soil of the same type

Datasets: Soil Composition


Parameters: Customization

Some capabilities exist within Noah-MP to read spatiallydependent soil and vegetation properties

Allows users who have local information to access it in the model

Soil properties: b, dksat, dwsat, psisat, smcdry, smcmax, smcref, smcwlt, slope, refdk, refkdt, rsurfexp, quartz

Vegetation properties: cwpvt, hvt, mp, vcmx25, mfsno

Example of 2D porosity field in NWM

Conclusions

- Land surface models are used to partition incoming surface energy and water into outgoing/internal fluxes and internal storage
- Land surface models are evolving to better represent reality and to expand user bases
- Evolving land surface model structure is leading to new challenges, e.g., parameters, parameters!
- Knowledge of both model structure and parameter assumptions is essential to properly use an LSM