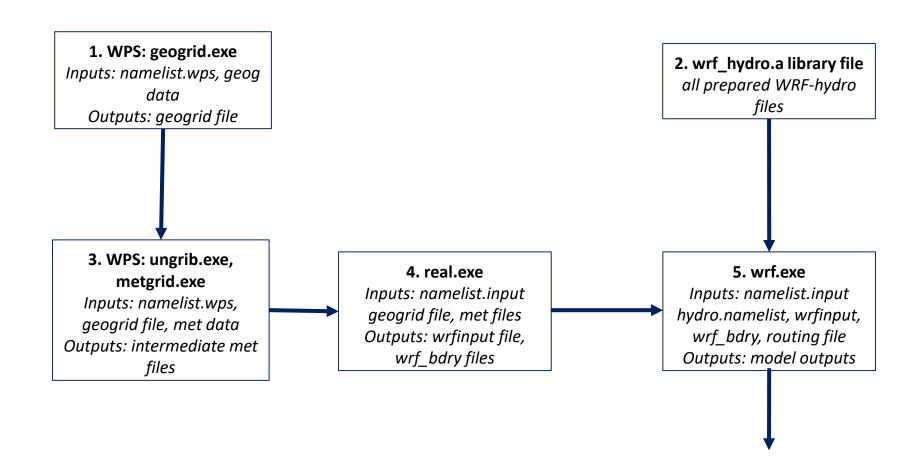
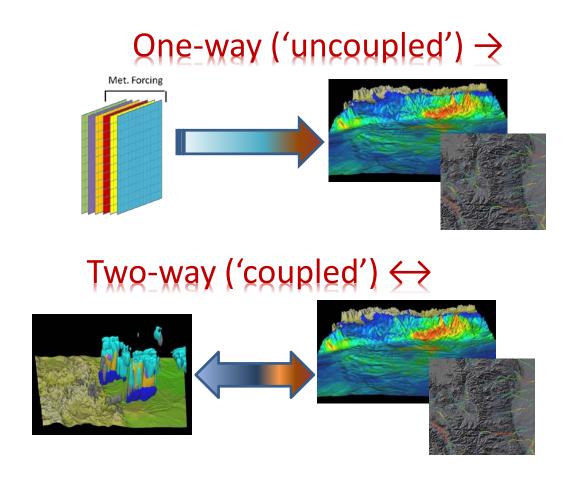

WRF-Hydro Implementation & Best Practices



National Center for Atmospheric Research


Uncoupled WRF-Hydro Workflow

Coupled WRF | WRF-Hydro Workflow

WRF-Hydro Model Architecture

- Uncoupled mode critical for spinup, data assimilation and model calibration
- Coupled mode critical for landatmosphere coupling research and long-term predictions
- Model forcing and feedback components mediated by WRFHydro:
 - Forcings: T, Press, Precip., wind,
 radiation, humidity, BGC-scalars
 - Feedbacks: Sensible, latent,
 momentum, radiation, BGC-scalars

Suggested WRF-Hydro Implementation Steps

Tips from our helpdesk regarding setup and preprocessing

- 1. See our Frequently Asked Questions (FAQs) webpage https://ral.ucar.edu/projects/wrf hydro/faqs
 - See the requirements and example installation
- 2. Check that you have the correct NetCDF libraries installed
 - NetCDF C Version 4.4.1.1, NetCDF F Version 4.4.4
 - If coupling with WRF check that the netcdf4 flag is enabled
- 3. For working with the WRF-Hydro ArcGIS Preprocessing Tool
 - Have a valid version of ArcGIS
 - Have Spatial Analyst Extension enabled
 - Do not write your files to a geodatabase or network location.
 - Specify that your output file goes to a directory on disk which exists
 - Check your installation: It helps to have 64-bit Background Geoprocessing module installed, and Background Geoprocessing enabled.
 - Check that your directory names and/or file names do not have spaces or special characters in them.
 - Make sure that your DEM encompasses the entire extent of the Geogrid domain
- 4. When preparing your forcing data make sure that there are **no missing** data

Suggested WRF-Hydro Implementation Steps

This procedure will help isolate problems which may otherwise be difficult and/or timeconsuming to diagnose in many implementations: 1. Derive and QC all inputs...(time mean fields, accumulation fields, screen for anomalies...)

- 2. Conduct offline simulations...
- 3. Start with 'idealized' forcing (FORC_TYP = 4)
- 4. Run WRF_Hydro with no routing
- 5. Then sequentially add routing components:
 - 1. Sfc/subsfc
 - 2. GW/baseflow
 - 3. Channel flow
 - 4. Reservoirs
- 6. If all above works, then non-forcing input grids and components are functional (though not guaranteed accurate!)
- 7. Do offline runs with FORC_TYP set to data input format
- 8. After all that and calibration, then run coupled WRF-Hydro

Model Evaluation: Multi-scale model analysis over intensive observational testbeds

3 legs of the model 'fidelity' stool:

1. Temporal Domain:

- Assessing high and low frequency behavior in model simulated flow responses
- Diagnosing extremes in hydrological models

2. Spatial Domain:

- Capturing patterns of heterogeneity and organization in hydrologic states (GW, snow, S.M.)
- Representing changes in runoff productivity across climate-topographic gradients
- Reproducing the appropriate upscale behavior of runoff and streamflow from headwater to large river system

3. Multi-variate model characterization:

- Energy and Radiation fluxes
- Inundation
- Groundwater-critical zone interactions
- Shallow soil moisture

Routing Options

Туре	When/Why To Use	Benefits	Drawbacks
Subsurface Routing			
SUBRTSWCRT	When local topography is important to flow processes or your fluxes/states of interest	Allows lateral water movement between cells, better representing convergence/divergence patterns (e.g., water converging into a valley) and residence times	More computationally expensive
Overland Flow Routing			
OVRTSWCRT	When fast surface flow processes are of interest/importance (e.g., flood forecasting vs. water supply forecasting)	Better represents local ponding and re- infiltration; required to capture land runoff directly to channels and lakes	More computationally expensive
Channel Routing			
CHANRTSWCRT	When you want streamflow in the channel		
Muskingham- Reach channel_option = 1	When you want an approximate solution as efficiently as possible (e.g., over a large domain or with limited compute resources)	Computationally cheap and fast	Limited to uniform fluxes/states per reach (not ideal if reaches are long); no backwater effects
Muskingham-Cunge- Reach channel_option = 2	When you want an approximate solution as efficiently as possible (e.g., over a large domain or with limited compute resources)	Computationally cheap and fast; more "stable" in terms of propagating flow one-way down the channel	Limited to uniform fluxes/states per reach (not ideal if reaches are long); no backwater effects
Diffusive Wave- Gridded channel_option = 3	When you need a more precise/accurate local solution and have sufficient compute resources (e.g., small or high-resolution domains, conditions where hydraulic processes are important)	Captures backwater flow; provides higher spatial detail on channel flow (e.g., every channel grid cell); only option that allows (limited) water fluxes from land to lake	More computationally expensive, can be sensitive to parameters and internal time steps

Computational Considerations

- Domain Size Smaller domains require fewer resources
- Routing Options Do initial testing with routing off and add options incrementally to isolate problems should they arise
- Output Options Reduce to only those you need
- Output Timestep Reduce the frequency to save disk space and improve runtime
- Restart Files Costly produce only a couple times during a simulation as needed

WRF-Hydro: http://www.ral.ucar.edu/projects/wrf_hydro/

© UCAR 2020