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Mortality Per 100,000 People

Seasonality of Influenza

Average Daily Excess Pneumonia and Influenza Mortality 1972-2002
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Modes of Influenza Transmission

e Direct Contact
* Indirect Contact
(Fomites)

e Droplet

e Airborne




Guinea Pig Experiment

e Ran this chamber experiment 20
times at different temperature and
relative humidity (RH) conditions

e Found marginally statistically
significant effects

e Colder temperatures and lower
RH favored transmission

< FRrow ]

EXPOSED INFECTED

EXPOSED INFECTED

Lowen et al., 2007



Measures of Humidity

Relative Humidity (RH) is not a
well-constrained variable

RH varies as both a function of |RH = — x 100%
air water vapor content and es(T)
temperature

e Is the vapor pressure - a measure of the actual water
vapor content of the air

eS(T) Is the saturation vapor pressure, the point at which
rates of condensation and evaporation are equivalent. This
quantity varies strongly as a function of temperature.



Measures of Humidity

Why explore Relative Humidity
(RH)?

Saturation vapor pressure
(100% RH) rises exponentially
with increasing temperature

Why not use a measure of
absolute humidity?

Vapor Pressure v. Temperature

— 100% RH
— 50% RH

0 10 20 30 40
Temperature

Vapor Pressure
N
o

Air with 50% RH at
25°C has nearly 4
times as much water

vapor as air with 50%
RH at 5°C




Testing Absolute Humidity

Relative Humidity Regression
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Hypothesis 1

Virus-laden aerosols (droplet nuclei) are more efficiently
produced at lower humidity due to increased evaporation of
expelled droplet particles, such that more virus remains
airborne longer;

Whether an expelled droplet remains
airborne or settles to the surface dz 20 gr?
depends on rates of sedimentation dt  9n

and evaporation




Hypothesis 1

a) Settling Time for Initial Radius: 20um

Evaporation will produce more droplet g0 B
. T : : : 32
nuclei at lower humidity | ' ;
© B0 o 0
2 z z 128
However, evaporation really proceeds £, conations . g | {25
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If evaporation is the means through : 0-6»\ |
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should also exist. 0 0.05 0.1



Hypothesis 2

Influenza virus survival (IVS) increases as humidity
decreases, such that the airborne virus remains viable longer
at lower humidity

Many studies of IVS response to
RH and temperature. No studies of
IVS response to absolute humidity.




a) Relative Humidity b) Relative Humidity Regression
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Seasonality of Influenza

a) Monthly Indoor Climatology
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The relationships presented
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Can we use observed AH conditions
to simulate influenza?



Functional Humidity Relationship

Influenza Virus Survival

Regression on Specific Humidity

Influenza Virus Transmission
Regression on Specific Humidity

Functional Relationship Between Ro(t) and q(t)
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Humidity-forced SIRS Model

C
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Here p is a function of observed

daily specific humidity, a
measure of absolute humidity

Assessed fit to excess weekly
P&I mortality via a conversion
factor cases->lagged deaths




1972-2002 Model Simulations

5000 1972-2002

simulations run for 2
5 states (AZ, FL, IL, <
NY and WA) s
Each run uses a ‘%
different &
combination of the
parameters:
L =2-10 years
D=2-7d 0
Omax =1.3-4 §
Omm = O 8 1 3 g
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Modeling the Seasonal Cycle
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Can We Predict Individual Outbreaks?



Can We Predict Individual Outbreaks?

e Seasonal flu dynamics are nonlinear
and irregular

e Qutbreaks, though in winter, vary
enormously from year-to-year




Can We Predict Individ

e Seasonal flu dynamics are nonlinear
and irregular

e Qutbreaks, though in winter, vary
enormously from year-to-year

Estimated IL1/100,000 People

w
o
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2000 |-

* There are other systems with similar
Issues that are predicted

Jal Outbreaks?

7000 |-

6000 [~
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Model-Inference Forecasting Approach

e Seasonal flu dynamics are nonlinear
and irregular

ple

,000 Peo

e Qutbreaks, though in winter, vary
enormously from year-to-year

Estimated IL1/100

To predict influenza, we mimic strategies
used in numerical weather prediction

Requires 3 ingredients:

1) Observationally-validated model of influenza transmission
dynamics

2) Real-time estimates of influenza infection rates (i.e. observations)

3) Data assimilation method to rigorously combine #1 and #2.



Humidity-forced SIRS Model
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Here p is a function of observed
daily specific humidity, a
measure of absolute humidity

Describes seasonal cycle of
influenza (excess weekly P&l
mortality)




L1+

* For municipal forecasting, we often use a more specific
estimate of influenza incidence

* We multiply municipal ILI estimates by influenza positive
test proportions

* The resulting metric (ILI+) eliminates signal from other
respiratory infections, such as rhinovirus

8000 T T T T T 2000

6000 = 1500

4000 =1 1000

L b a

2004 2005 2006 2007 2008

ILI Only
171




Data Assimilation

Recursive (iterative) filtering of
observations in a statistically
rigorous fashion into an evolving
model construct

*@»
— <-4—y
—p

* Particle Filtering \ N
e Kalman Filtering . the2
* Variational Methods o N

oo 7

\_-—-»

Methods used in many disciplines,
including numerical weather
prediction where it is used to
generate improved forecasts



Prior to Forecast: Training the Model

« Errors in the model structure, model parameters and
initial model state amplify through time

o Leftto its own devices the model forecast will deviate
from reality

/True Outcome



Prior to Forecast: Training the Model

* Errors in the model structure, model parameters and
initial model state amplify through time

o Leftto its own devices the model forecast will deviate
from reality

Model Simulated

True Outcome



Prior to Forecast: Training the Model

* Errors in the model structure, model parameters and

initial model state amplify through time

o Leftto its own devices the model forecast will deviate
from reality

15

True Outg

x104
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45



Prior to Forecast: Training the Model

The real-time observations and data assimilation
methods are used to recursively adjust and optimize the
mathematical model

It is an inference problem - estimating unobserved state
variables and parameters

P(Zt|yt, y—1,--.) X P(y| Ze) P(Ze|yt—1, ---)

If the data are rich enough for a given system, the state
variables and parameters should be identifiable

By simulating the past to present well, the system has a
higher probability of forecasting the future accurately

The ensemble forecast itself is run following
assimilation of the latest observation



Example Real-Time Forecast During 2012-2013

Salt Lake City Week 50 Forecast
6000 ] [

i * Ob ]d(T ining)
Forecasts (grey lines) N Observed (Traiing
: | —— Mean Posteri
made W|th an SIRS Er?::mbcl)esz gg?ercasts
model 40001

3000

Scaled ILI+

Model recursively
trained using real-time
observations (black x’)
and data assimilation 9
methods up to the point

of forecast (Week 50)

2000

1000+

Week

Observed estimates of influenza
incidence that were in the future at
the time of forecast are shown as
red x’.



A Calibrated Forecast

Do not simply want to

predict an outcome (e.g.

the peak will occurin5 5000
week) 4000

Scaled ILI+
w
o
o
o

Want to know the
certainty of the forecast
as it is made

2000

Salt Lake City Week 50 Forecast

*  Observed (Training)
x  Observed

Mean Posterior
Ensemble Forecasts

1000

Is there a 90% chance
the peak will occurin 5
weeks?

Is there a 20% chance?

Week

Accurate ascription of forecast
certainty provides the public health
user a much richer, more
actionable prediction



A Calibrated Forecast

It turns out, we can use
the spread of each
ensemble of predictions
to estimate the
certainty of a forecast

The relationship
between that spread
(variance) and accuracy
for past forecasts can be
used to calibrate
forecasts made in real
time

Scaled ILI+

Salt Lake City Week 50 Forecast

6000H * Observed (Training)
*  Observed

Posterior
5000 —— Forecasts
—— Mean Trajectory

Above plot now shows the
individual trajectories within a
single ensemble forecast



Real-Time Forecast for 108 US Cities
2012-2013 Season

A number of issues to be verified:

— The accuracy of the forecasts (are the
forecasts superior to climatological
expectance)

— The expected accuracy of the forecasts
(does the ensemble spread provide
good information on the quality of
individual forecasts)

— The forecast lead (are accurate
forecasts of peak timing engendered in
advance of the peak)

34



Predicting Peak Timing

A number of issues to be verified:

— The accuracy of the forecasts -- by Week 52
of the 2012-2013 season 63% of forecasts for
108 cities were accurately forecast (84% of
cities peaked Week 2 or later)

1r

— SIRS-EAKF
y — Bootstrap 1
08 - Bootstrap 2

of All Forecasts Accurate
o
(0)]

©
H
I

0.2=

Fraction

0 = | ] | |} ] I I | I I = 35
47 48 49 50 51 52 1 2 3 4 5 6
Week of Forecast



Much Work Remains

e Can we build a more

reliable forecast model?
Testing Alternate Model Forms (age-
stratified, stochastic v. deterministic,

multiple strains, spatially explicit) R (B) SR particle filter

* Can we improve model
optimization?
Testing and creating different data

assimilation methods (ensemble filters,
particle filters)

true
state

e Can we provide forecasts ., .o

for local public health use? B o
Testing different observations of

influenza (Google, CDC, Twitter, Yang and Shaman, 2014
Wikipedia, WHO)



Cases (per 100,000 patient visits)

Operational Dissemination:
A Web Portal (cpid.iri.columbia.edu)

Data for Seattle, WA, week ending: Sat Feb 08 2020

Using observations through week 58

6k

Peak Timing Date: 22 Dec 2019
StDev: 1.95 weeks, Expected Accuracy: 71%
Peak Intensity: 3450 cases:

4k StDev: 305, Expected Accuracy: 43% [

Onset: 24 Nov 2019, StDev: 0.00 weeks

Duration: 15.00 weeks, StDev: 2.53 weeks | I I I
2k I l l T [ 1
7/ | [ 1] AN
- T 1 SA
. . 1 o, 5
0
-2k
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Large-Scale Spatial-Temporal Forecast of Influenza

ILI+ rate
o
o
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35 states in US |

Random visitors
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Large-Scale Spatial-Temporal Forecast of Influenza
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Pei et al.,

Accuracy considerably improved, particularly for prediction of outbreak
onset (compared to forecasts run in isolation at each site)

2018



West Nile Virus

Week 29 Week 31 Week 33
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West Africa Real-Time Ebola Forecasts

Guinea: No Change _Guinea: Improved
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Shaman et al., 2014



Inference of the Spatial Spread of Ebola

Koinadugu
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Yang et al., 2015



Inference of Asymptomatic Colonization of MRSA
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Understanding Prevalence and
Transmission of Respiratory Viruses




e Cohort — 214 individuals from October 2016 to April 2018.

(two daycares, CUMC, pediatric and adult ED, high school). Weekly swabs +
daily symptoms.

Virome of Manhattan
Most Infections Undocumented

7

Influenza 32 0.22 14 0.44 18 0.56

RSV 30 2 0.07 6 0.20 12 0.40
PIV 30 3 0.10 4 0.15 9 0.30
HMPV 20 4 0.20 7 0.35 10 0.50
HRV 275 24 0.09 31 0.11 70 0.25
Adenovirus 63 9 0.14 10 0.16 14 0.22
Coronavirus 137 6 0.04 13 0.09 36 0.25

*group of consecutive weekly specimens from a given individual that were positive for the same
(allowing for a one-week gap to account for false negatives and temporary low shedding).
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Chongqing

COVID-19 Rapid Spread

)

At least 175,000 people left Wuhan just on that
. Zhengzhou ¢ day, we found.

Sk Travel from Wuhan on Jan. 1

Shwan‘ Xinyang il ~ OShanghai

-
-
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Nanchang

Chanésha

Q

New York Times, March 22, 2018



Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
the rapid spread of disease”?

ds; SiIf o S;I* M;;S; M;;S;
_lz_ﬂ B l_l_gzj l]i GZj ]l;
dt N; N; Nj-Ij N;-I]

dE; /35 (e UAS|IE M;;E; M ;iE;
L ll+ i _l+92j Ui_er ]1;
dt N; N; Z N;—Ij N;-I]

afs .
a. =) ]
a; - B l]] Mjilly

N;=N;+0%;M;; —03;M,;

Li et al., 2020

* Metapopulation network
model representing 375
cities in China

 Use Tencent travel

records during the
Chunyun spring festival

* Coupled with data
assimilation methods

« Use daily observations
from all 375 cities

e Simulate January 10-23



Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
the rapid spread of disease”?

asi _ _ BSii _ MBSH 10y, Miij_ez_MjiSi

dt N; JN (i} J Ni-IT

dE; S;I! SE B M;;E ; M ;;E;
i Bu_l_#ﬂl _L_I_ezj U{ﬂ_er ]1;

dt N; N; Z Nj-I] N;—I!

a.. B L

a7 D

d_Iu 1 L e l]] ) Mjil;'u

N;=N;+0Y;M;;—0%;M;

Li et al., 2020

Simulate January 10-23

Prior to travel
restrictions

The model separately
represents documented
and undocumented
infections

The model has a
separate
contagiousness for
documented/
undocumented
infections



Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
the rapid spread of disease”?

B Iz 0 .
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Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
the rapid spread of disease”?

Parameter

Median (95% Cls)

Transmission rate (8, days™!)
Relative transmission rate (u)
Latency period (Z, days)
Infectious period (D, days)
Reporting rate (a)

Basic reproductive number (Re)
Mobility factor (6)

1.12 (1.04, 1.18)
0.55 (0.46, 0.62)
3.69 (3.28, 4.03)
3.48 (3.18, 3.74)
0.14 (0.10, 0.18)
2.38 (2.04, 2.77)
1.36 (1.28, 1.43)

Li et al., 2020

Estimate that 14% of
Infections are
documented

86% are undocumented

Per person,
undocumented
infections are on
average half as
contagious (55%) as
documented infections

2.38 reproductive
number



Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
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Inference of Undocumented COVID-19 Infections
Are contagious, undocumented infections supporting
the rapid spread of disease”?
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e Simulations show without transmission from
undocumented cases, confirmed cases

(0)
Li et al.. 2020 decrease 79%



Documentation History of CoV

SARS: sub-clinical infection rates believed to be low
(WHO, 2003)

MERS: 21% of laboratory identified cases were mild or
asymptomatic (WHO, 2018)

Seasonal Coronaviruses (229E, OC43, NL63, HKU1)
— 135 infection events
— >60% mild or asymptomatic

— 4% sought medical care (all had either OC43 or
HKU1—the two seasonal betacoronaviruses)
(Shaman and Galanti, 2020)

Our model-inference approach identifies a 14%
documentation rate prior to travel restrictions (Li et al.
2020) and indicates that undocumented infections
contribute substantially to COVID-19 transmission.




Projections for the US

No Control Simulation - June 20, 2020 25% Transmission Reduction Simulation - June 20, 2020

2020-06-20 Incidence 10 M 100 I 1000 @ 10000 2020-06-20 Incidence 10 ¥ 100 1 1000 I 10000
50% Transmission Reduction Simulation - June 20, 2020 95% Movement Reduction Simulation - June 20, 2020
r'd

M

Pei and Shaman, 2020

2020-06-20 Incidence [ 10 I 100 I 1000 M 10000 2020-06-20 Incidence I 10 I 100 M 1000 I 10000




Initial Estimates for the US
(through March 13, 2020)

Parameter

Median (95% Cls)

Transmission rate (8, days™')
Relative transmission rate ()
Latency period (Z, days)
Infectious period (D, days)

Reporting rate (a)

Basic reproductive number (Re)

Mobility factor (0)

0.95 (0.84, 1.06)
0.64 (0.56, 0.70)
3.59 (3.28, 3.99)
3.56 (3.21, 3.83)
0.080 (0.069, 0.093)
2.27 (1.87, 2.55)
0.15 (0.12,0.17)

Pei and Shaman, 2020



Re-Opening

County-ovel R offoctve In Asopening States
9

) e “ ., | Effective
g 2 e e . ¢ ) . . reproduction
g1 { o | ‘) ) | number for
I RN N counties in
g ¢ L ~ i _& reopening
el i L : i ‘ states as of May
oL ’ _ . 2, 2020.
28 < s ; £ g g § g
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1.Weekly 20% decrease in places with growing weekly cases and a one-time
10% increase in places with return to work (latter supersedes the former)

2.Weekly 20% decrease in places with growing weekly cases and a weekly
10% increase in places with return to work (latter supersedes the former)

3.Weekly 20% decrease in places with growing weekly cases
Yamana et al., 2020
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1.Weekly 20% decrease in places with growing weekly cases and a one-time
10% increase in places with return to work (latter supersedes the former)

2.Weekly 20% decrease in places with growing weekly cases and a weekly
10% increase in places with return to work (latter supersedes the former)

3.Weekly 20% decrease in places with growing weekly cases
Yamana et al., 2020



Inference, Fitting and Projection
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