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Seasonality of Influenza
Average Daily Excess Pneumonia and Influenza Mortality 1972-2002



Modes of Influenza Transmission
• Direct Contact 

• Indirect Contact  

(Fomites) 

• Droplet 

• Airborne



Guinea Pig Experiment

Lowen et al., 2007

• Ran this chamber experiment 20 
times at different temperature and 
relative humidity (RH) conditions  

• Found marginally statistically 
significant effects 

• Colder temperatures and lower 
RH favored transmission



Measures of Humidity
Relative Humidity (RH) is not a 
well-constrained variable 

RH varies as both a function of 
air water vapor content and 
temperature
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   is the vapor pressure - a measure of the actual water 
vapor content of the air 
        is the saturation vapor pressure, the point at which 
rates of condensation and evaporation are equivalent.  This 
quantity varies strongly as a function of temperature.

  

€ 

es T( )

  

€ 

e



Measures of Humidity

Why explore Relative Humidity 
(RH)? 

Saturation vapor pressure 
(100% RH) rises exponentially 
with increasing temperature 

Why not use a measure of 
absolute humidity? 

Air with 50% RH at 
25ºC has nearly 4 
times as much water 
vapor as air with 50% 
RH at 5ºC



Testing Absolute Humidity
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Calculated the vapor pressure from the 
temperature and RH

Found influenza transmission 
possesses a much more statistically 
significant association with vapor 
pressure than either RH or temperature



Hypothesis 1

Virus-laden aerosols (droplet nuclei) are more efficiently 
produced at lower humidity due to increased evaporation of 
expelled droplet particles, such that more virus remains 
airborne longer;

Whether an expelled droplet remains 
airborne or settles to the surface 
depends on rates of sedimentation 
and evaporation



Hypothesis 1

Evaporation will produce more droplet 
nuclei at lower humidity 

However, evaporation really proceeds 
as:  

If evaporation is the means through 
which humidity affects influenza 
transmission, then a strong relationship 
between influenza transmission and (1) 
should also exist.  

(1)



Hypothesis 2
Influenza virus survival (IVS) increases as humidity 
decreases, such that the airborne virus remains viable longer 
at lower humidity

Many studies of IVS response to 
RH and temperature.  No studies of 
IVS response to absolute humidity.  



Hypothesis 2

Data of Harper (1961) 

90% of 1-hour influenza 
virus survival variance is 
explained by absolute 
humidity



Seasonality of Influenza

The relationships presented 
indicate that low humidity levels 
favor influenza survival and 
transmission 

Absolute humidity (VP) is 
minimal, both indoor and 
outdoor, in winter 

Can we use observed AH 
conditions to simulate influenza?



Can we use observed AH conditions 
to simulate influenza?



Functional Humidity Relationship
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Humidity-forced SIRS Model

S RI
Here β is a function of observed 
daily specific humidity, a 
measure of absolute humidity 

Assessed fit to excess weekly 
P&I mortality via a conversion 
factor cases->lagged deaths 
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1972-2002 Model Simulations
5000 1972-2002 
simulations run for 
5 states (AZ, FL, IL, 
NY and WA) 

Each run uses a 
different 
combination of the 
parameters: 
L = 2-10 years 
D = 2-7 d 
R0max = 1.3-4 
R0min = 0.8-1.3



Modeling the Seasonal Cycle



Can We Predict Individual Outbreaks?



Can We Predict Individual Outbreaks?
• Seasonal flu dynamics are nonlinear 
and irregular 

• Outbreaks, though in winter, vary 
enormously from year-to-year 



Can We Predict Individual Outbreaks?
• Seasonal flu dynamics are nonlinear 
and irregular 

• Outbreaks, though in winter, vary 
enormously from year-to-year 

• There are other systems with similar 
issues that are predicted 



Model-Inference Forecasting Approach
• Seasonal flu dynamics are nonlinear 
and irregular 

• Outbreaks, though in winter, vary 
enormously from year-to-year 

To predict influenza, we mimic strategies  
used in numerical weather prediction 

Requires 3 ingredients: 

1) Observationally-validated model of influenza transmission 
dynamics 

2) Real-time estimates of influenza infection rates (i.e. observations) 

3) Data assimilation method to rigorously combine #1 and #2.



Humidity-forced SIRS Model

S RI
Here β is a function of observed 
daily specific humidity, a 
measure of absolute humidity 

Describes seasonal cycle of 
influenza (excess weekly P&I 
mortality) 
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ILI+
• For municipal forecasting, we often use a more specific 

estimate of influenza incidence 
• We multiply municipal ILI estimates by influenza positive 

test proportions 
• The resulting metric (ILI+) eliminates signal from other 

respiratory infections, such as rhinovirus



Data Assimilation
Recursive (iterative) filtering of 
observations in a statistically 
rigorous fashion into an evolving 
model construct 

• Particle Filtering 
• Kalman Filtering 
• Variational Methods 

Methods used in many disciplines, 
including numerical weather 
prediction where it is used to 
generate improved forecasts



Prior to Forecast: Training the Model
• Errors in the model structure, model parameters and 

initial model state amplify through time 
• Left to its own devices the model forecast will deviate 

from reality

True Outcome



Prior to Forecast: Training the Model
• Errors in the model structure, model parameters and 

initial model state amplify through time 
• Left to its own devices the model forecast will deviate 

from reality

True Outcome

Model Simulated
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Prior to Forecast: Training the Model
• Errors in the model structure, model parameters and 

initial model state amplify through time 
• Left to its own devices the model forecast will deviate 

from reality

True Outcome
Model Simulated



Prior to Forecast: Training the Model
• The real-time observations and data assimilation 

methods are used to recursively adjust and optimize the 
mathematical model 

• It is an inference problem - estimating unobserved state 
variables and parameters 

• If the data are rich enough for a given system, the state 
variables and parameters should be identifiable 

• By simulating the past to present well, the system has a 
higher probability of forecasting the future accurately 

• The ensemble forecast itself is run following 
assimilation of the latest observation



Example	Real-Time	Forecast	During	2012-2013

Forecasts	(grey	lines)	
made	with	an	SIRS	
model	

Model	recursively	
trained	using	real-Eme	
observaEons	(black	‘x’)	
and	data	assimilaEon	
methods	up	to	the	point	
of	forecast	(Week	50)	

	

Observed	esEmates	of	influenza	
incidence	that	were	in	the	future	at	
the	Eme	of	forecast	are	shown	as	
red	‘x’.



A	Calibrated	Forecast
Do	not	simply	want	to	
predict	an	outcome	(e.g.	
the	peak	will	occur	in	5	
week)	

Want	to	know	the	
certainty	of	the	forecast	
as	it	is	made	

Is	there	a	90%	chance	
the	peak	will	occur	in	5	
weeks?	

Is	there	a	20%	chance?

Accurate	ascripEon	of	forecast	
certainty	provides	the	public	health	
user	a	much	richer,	more	
acEonable	predicEon



A	Calibrated	Forecast
It	turns	out,	we	can	use	
the	spread	of	each	
ensemble	of	predicEons	
to	esEmate	the	
certainty	of	a	forecast	

The	relaEonship	
between	that	spread	
(variance)	and	accuracy	
for	past	forecasts	can	be	
used	to	calibrate	
forecasts	made	in	real	
Eme

Above	plot	now	shows	the	
individual	trajectories	within	a	
single	ensemble	forecast



Real-Time Forecast for 108 US Cities  
2012-2013 Season

• A number of issues to be verified: 
– The accuracy of the forecasts (are the 

forecasts superior to climatological 
expectance) 

– The expected accuracy of the forecasts 
(does the ensemble spread provide 
good information on the quality of 
individual forecasts) 

– The forecast lead (are accurate 
forecasts of peak timing engendered in 
advance of the peak)  34



Predicting Peak Timing
• A number of issues to be verified: 

– The accuracy of the forecasts -- by Week 52 
of the 2012-2013 season 63% of forecasts for 
108 cities were accurately forecast (84% of 
cities peaked Week 2 or later)

 35



Much Work Remains

• Can we build a more 
reliable forecast model? 
Testing Alternate Model Forms (age-
stratified, stochastic v. deterministic, 
multiple strains, spatially explicit) 

• Can we improve model 
optimization?                   
Testing and creating different data 
assimilation methods (ensemble filters, 
particle filters) 

• Can we provide forecasts 
for local public health use? 
Testing different observations of 
influenza (Google, CDC, Twitter, 
Wikipedia, WHO)

Yang	and	Shaman,	2014



Operational Dissemination: 
A Web Portal (cpid.iri.columbia.edu)
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Large-Scale Spatial-Temporal Forecast of Influenza

Pei et al., 2018



Large-Scale Spatial-Temporal Forecast of Influenza

Pei et al., 2018

Accuracy considerably improved, particularly for prediction of outbreak 
onset (compared to forecasts run in isolation at each site)



West Nile Virus

DeFelice	et	al.,	2017



West Africa Real-Time Ebola Forecasts

Shaman et al., 2014



Inference of the Spatial Spread of Ebola

Yang et al., 2015



Inference of Asymptomatic Colonization of MRSA

Pei et al., 2018



Understanding Prevalence and 
Transmission of Respiratory Viruses 



Virome of Manhattan  
Most Infections Undocumented

VIRUS EPISODES* MA P(MA|vi) HOME P(HOME|vi) MEDS P(MEDS|vi)

Influenza 32 7 0.22 14 0.44 18 0.56

RSV 30 2 0.07 6 0.20 12 0.40

PIV 30 3 0.10 4 0.15 9 0.30

HMPV 20 4 0.20 7 0.35 10 0.50

HRV 275 24 0.09 31 0.11 70 0.25

Adenovirus 63 9 0.14 10 0.16 14 0.22

Coronavirus 137 6 0.04 13 0.09 36 0.25

*group	of	consecutive	weekly	specimens	from	a	given	individual	that	were	positive	for	the	same	virus	
(allowing	for	a	one-week	gap	to	account	for	false	negatives	and	temporary	low	shedding).	

• Cohort	—	214	individuals	from	October	2016	to	April	2018.	
(two	daycares,	CUMC,	pediatric	and	adult	ED,	high	school).	Weekly	swabs	+	
daily	symptoms	.



COVID-19 Rapid Spread

New York Times, March 22, 2018



Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?

Li et al., 2020

• Metapopulation network 
model representing 375 
cities in China 

• Use Tencent travel 
records during the 
Chunyun spring festival 

• Coupled with data 
assimilation methods 

• Use daily observations 
from all 375 cities 

• Simulate January 10-23



Li et al., 2020

• Simulate January 10-23 
• Prior to travel 

restrictions 
• The model separately 

represents documented 
and undocumented 
infections 

• The model has a 
separate 
contagiousness for 
documented/
undocumented 
infections 

Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?



Li et al., 2020

• Synthetic test of model-
inference parameter 
estimation using model-
generated observations

Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?



Li et al., 2020

• Estimate that 14% of 
infections are 
documented 

• 86% are undocumented 
• Per person, 

undocumented 
infections are on 
average half as 
contagious (55%) as 
documented infections 

• 2.38 reproductive 
number

Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?
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Li et al., 2020

• Simulations with the 
parameter estimates 
match the observed 
outbreak

Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?



Li et al., 2020

• Simulations show without transmission from 
undocumented cases, confirmed cases 
decrease 79%

Inference of Undocumented COVID-19 Infections 
Are contagious, undocumented infections supporting 

the rapid spread of disease?



Documentation History of CoV
• SARS: sub-clinical infection rates believed to be low 

(WHO, 2003) 
• MERS: 21% of laboratory identified cases were mild or 

asymptomatic (WHO, 2018) 
• Seasonal Coronaviruses (229E, OC43, NL63, HKU1) 

– 135 infection events 
– >60% mild or asymptomatic 
– 4% sought medical care (all had either OC43 or 

HKU1—the two seasonal betacoronaviruses) 
(Shaman and Galanti, 2020) 

• Our model-inference approach identifies a 14% 
documentation rate prior to travel restrictions (Li et al. 
2020) and indicates that undocumented infections 
contribute substantially to COVID-19 transmission.



Projections for the US
No Control Simulation - June 20, 2020 25% Transmission Reduction Simulation - June 20, 2020

50% Transmission Reduction Simulation - June 20, 2020 95% Movement Reduction Simulation - June 20, 2020

Pei and Shaman, 2020



Initial Estimates for the US 
(through March 13, 2020)

Pei and Shaman, 2020



Re-Opening

Yamana et al., 2020

1.Weekly 20% decrease in places with growing weekly cases and a one-time 
10% increase in places with return to work (latter supersedes the former)

2.Weekly 20% decrease in places with growing weekly cases and a weekly 
10% increase in places with return to work (latter supersedes the former)

3.Weekly 20% decrease in places with growing weekly cases

Effective 
reproduction 
number for 
counties in 
reopening 
states as of May 
2, 2020. 



Re-Opening

Yamana et al., 2020

1.Weekly 20% decrease in places with growing weekly cases and a one-time 
10% increase in places with return to work (latter supersedes the former)

2.Weekly 20% decrease in places with growing weekly cases and a weekly 
10% increase in places with return to work (latter supersedes the former)

3.Weekly 20% decrease in places with growing weekly cases

Projections of 
Re-Opening



Inference, Fitting and Projection

• Pei et al., 2020



Counterfactuals

Pei et al., 2020


