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PREFACE
This manuscript is intended to give a simple overview to constructing and using
confidence intervals for the purposes of forecast verification. A more detailed
manuscript on the subject can be found in Gilleland (2010).
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1 Introduction
Traditional forecast verification summarizes forecast performance through statist-
ics such as the root mean square error (continuous fields), probability of detection
(contingency tables), etc. When obtaining such a point estimate of a random
quantity the value observed is a single realization from a distribution of possible
values. Therefore, in order to make inferences about the true value of the quantity,
say θ, it is important to acknowledge this uncertainty about the point estimate.
A common and useful way of doing this is to report a confidence interval for the
quantity θ̂. Under the classical (or frequentist) paradigm, a (1− α) · 100% confid-
ence interval for a parameter estimate θ̂ is interpreted, awkwardly, as the interval
such that if it were reconstructed for 100 different realizations of the sample of
random variables, one would expect that the true parameter, θ, would fall inside
(1− α) · 100 of the intervals.

Confidence intervals are treated in any introductory statistical textbook, and
specifically for literature applied to forecast verification, see for example Jolliffe
(2007), Wilks (2006), Jolliffe and Stephenson (2003) and Gilleland (2010). This
write-up is an attempt to consolidate as much pertinent information on confidence
intervals as is reasonable (particularly as pertains to forecast verification) into a
single manuscript. For Bayesian Credible Intervals, see for example, Bernardo and
Smith (2000) and Jolliffe (2007). Fiducial confidence intervals as originally argued
for by Fisher (1935) is another frequentist approach intended to provide frequentist
intervals with a more favorable philosophical foundation to compete with Bayesian
intervals (e.g., Dawid and Stone, 1982; Hannig et al., 2006), confidence intervals for
this and the Bayesian paradigm are not discussed here. Another type of frequentist
confidence interval not discussed here is the profile-likelihood method (e.g., Coles,
2001; Gilleland and Katz, 2006) as this approach is not typically useful for most
forecast verification purposes.

Throughout this write-up, f will denote the forecast series (or field) and o the
verification series (or field), which may be a direct observation, or an interpolation
or analysis. Indeed, the validity of confidence intervals may be affected by the
nature of the verification series. For example, if multiple forecasts are being com-
pared, and an analysis obtained from one of the forecasts, say forecast A, is used as
the verification series, then there may be an artificial bias favoring forecast A over
the others. Further, even if direct observations are taken, there is inevitably an
error associated with them. Observational error can be an important component
of uncertainty that should be incorporated into the confidence intervals. However,
this issue is not discussed further here.

The following example will be used throughout as it illustrates a common
analysis required for many evaluations of forecast performance. It also illustrates
many of the points highlighted in this manuscript.
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Example 1.1. Figure 1 is an example of confidence intervals
obtained from bootstrapping for two versions of the WRF
model for 24-hour accumulated precipitation (in) for increas-
ing thresholds. The bias values were taken from adequately
spaced points in time so that temporal dependence is not
considered to be an issue.

Meaningful arguments about forecast performance can be
made from these intervals. For example, the uncertainty in-
creases as the threshold increases. In this case, the source
of the increased uncertainty is most likely from having fewer
observations exceeding the higher thresholds. Generally, it
will be more difficult to make strong conclusions in the face
of such large uncertainty. For the lower thresholds, where the
bias estimates are more certain, it can be seen that for both
models, the value of one does not lie within the intervals; the
estimate and bounds are all greater than one. The interpret-
ation for these thresholds, then, is that with 99% confidence
both models are over-forecasting precipitation above 0.01 and
0.10 inches. For other thresholds, it cannot be strongly ar-
gued that the ARW model is not unbiased.

While tempting to draw the conclusion from the red and
blue intervals in the figure that the ARW and NMM models
are not significantly different from each other in terms of
bias because their intervals overlap, this is not a defensible
conclusion. To make such inferences, we need to observe the
bias differences for between the two models as shown by the
green line in the figure. Upon doing so, we see that there are
thresholds where the ARW model is statistically significantly,
with 99% confidence, more biased than the NMM model,
despite that their confidence intervals overlap.

Note that this is not a statement about both models
simultaneously, or about both thresholds together (see sec-
tion 2.12 in Gilleland, 2010). Rather, these intervals were
constructed individually for each stratification of threshold,
model, season, domain, initialization- and lead- times, etc.
Therefore, we cannot draw conclusions about model perform-
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Figure 1: Forecast bias (with 99% confidence intervals) for 24-hour accumulated
precipitation (in) calculated for increasing thresholds for ARW (blue), NMM (red)
and the difference of NMM subtracted from ARW (green). Figure reproduced
from Bernadet et al. (2009).

!

ance across thresholds; though this is a fine point for the
present example.

2 Parametric vs. Non-parametric Confidence In-
tervals

There are many ways to construct valid confidence intervals, and generally these
can be divided into parametric and non-parametric intervals. By far the most
common parametric intervals are the normal approximation intervals, and several
others require an assumption of normality for the underlying sample (e.g., con-
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fidence intervals for variance and correlation (cf. Gilleland, 2010, sections 2.5 and
2.6)). The (1−α) ·100% normal approximation confidence interval for an estimate
θ̂ of the true value of some statistic θ is given by

θ̂ ± z1−α/2se(θ), (1)

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution function
(df), which because the normal df is symmetric, we have that z1−α/2 = zα/2. Note
that to obtain a 95% normal approximation confidence interval, the 2.5 and 97.5
quantiles of the standard normal df are needed. This is because 95% of the mass
of the normal df falls between these two quantiles (i.e., 1− α/2− α/2 = 1− α, so
for α = 0.05, 1− α = 0.95).

The most common type of non-parametric confidence interval is the bootstrap
interval. This manuscript will focus only on normal approximation and bootstrap
intervals. Briefly, a bootstrap interval is obtained from a sample of the statistic
of interest, θ1, . . . , θB. Such a sample is obtained from re-estimating θ numerous
times, say B times, from random samples of the data with replacement. There are
several ways to estimate the intervals from the sample θ1, . . . , θB (see Gilleland,
2010, section 3.2), but here we will only consider the percentile and BCa intervals.
The percentile interval is straightforward and easy to compute, but has stronger
assumptions than the BCa interval that, if violated, will yield too narrow inter-
vals. The BCa will be identical to the percentile intervals if the assumptions are
met, and are otherwise more accurate. The drawback to the BCa interval is that
it requires another round of re-sampling making it computationally more burden-
some. While the assumptions for bootstrap confidence intervals are considerably
less rigid than those for the normal intervals, there is still an assumption that the
data are independent and identically distributed (iid) and that the sample is rep-
resentative of the population. Therefore, the bootstrap procedure just described
will be referred to as the iid bootstrap in order to emphasize this important point,
and to distinguish it from other bootstrap procedures that do not require this
assumption. Table 1 summarizes the assumptions implied by each method (see
Gilleland, 2010, section 3 for more about the other bootstrap types).

2.1 Which should I use?

Many statistics, including many verification statistics, can take the normal approx-
imation interval, or one derived from a normality assumption. The assumption of
normality should be checked (see Gilleland, 2010, section 2.10), but when they
can be computed, they are quick and easy to construct; provided a reasonable
estimate of the standard error for the statistic can be found. See Gilleland (2010)
section 2 for information about which verification statistics can take the normal
approximation interval.
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Table 1: Assumptions implicit in standard confidence intervals for a statistic θ
estimated by θ̂ from a sample x1, . . . , xn by method.

Method Assumptions

Normal Approximation θ̂ ∼ N(θ, se(θ)).
x1, . . . , xn are iid.
Symmetric interval (implied by first assumption).
se(θ) is known or can be well estimated by ŝe(θ).

IID Bootstrap (percentile) x1, . . . , xn are iid.
θ̂ follows a symmetric df with constant variance.
The sample df of x1, . . . , xn is representative
of the population df.

IID Bootstrap (BCa) x1, . . . , xn are iid.
The sample df of x1, . . . , xn is representative
of the population df.

Block Bootstrap x1, . . . , xn are identically distributed.
Block lengths are substantially longer than
the dependence length.
The sample df of x1, . . . , xn is representative
of the population df.

Parametric Bootstrap Parametric model is correct.
Whatever assumptions there are about the
parametric model are correct.
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Even when the normal approximation interval is appropriate, bootstrap inter-
vals may be better in terms of accuracy; they will not be worse. There are less rigid
assumptions for them, and they do not require calculation (for most methods, such
as the percentile and BCa) of a standard error for the statistic. The drawback of
the bootstrap procedure is that it can be computationally expensive. In terms of
which type of bootstrap confidence intervals to use, the percentile is a good choice,
but if the assumption of symmetry and constant variance for the statistic’s df are
violated, the intervals will be too narrow. The BCa obviates these assumptions,
and when they are met resuces to the percentile intervals. The drawback of this
method is that it requires an additional resampling procedure to compute; mak-
ing it less computationally efficient than the percentile method. Another method,
called the ABC (Gilleland, 2010, section 3.2.5), is an approximation to the BCa,
but can only be computed for smooth statistics (e.g., the mean) but not for other
types (e.g., the median).

3 Dependence assumption
In most cases it is reasonable to assume that the data follow the same df, or
that any changes in distributional form can be easily handled in some way. For ex-
ample, in figure 1.1 the confidence intervals are calculated for reasonably homogen-
ous stratifications of verification fields (i.e., same season, same initialization/valid
times, etc.). To check the assumption of normality (for normal approximation
intervals) see Gilleland (2010) section 2.10.

The assumption about independence, however, is most often violated. The
intervals shown in figure 1.1 are estimated from samples that were taken over rel-
atively long intervals in time so that the independence assumption is reasonable.
However, if the assumption were found to be invalid, then it would be expected
that the intervals are too narrow because effectively there are repeated observa-
tions. That is, we have fewer sample points than it appears we have. Fewer sample
points implies that there is greater uncertainty than has been accounted for. This
would not affect conclusions pertaining to unbiasedness for those thresholds that
encompass one, but it might affect conclusions drawn, for example, about the two
lowest thresholds pertaining to unbiasedness. See section 2.11 in Gilleland (2010)
for a simple method of accounting for dependence with normal approximation in-
tervals; namely using the variance inflation factor. To account for dependence with
the bootstrap procedure, the simplest method is to use block bootstrapping (Gil-
leland, 2010, section 3.4). If a reasonable model (e.g., an autoregressive model)
exists to model the dependence, then a parametric bootstrap can be used, and
such a scheme is generally preferable, especially in the face of spatial dependence.
As mentioned in Table 1, the block bootstrap approach requires the block lengths
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to be substantially longer than the dependence length. For time series, this is
usually a reasonable assumption, but spatial dependence is often long relative to
the spatial region making it a less reasonable assumption.

3.1 Checking for dependence

Statistically, two events A and B are independent if Pr{A and B} = Pr{A}Pr{B},
or equivalently, Pr{A|B} = Pr{A} or Pr{B|A} = Pr{B}, where Pr{A|B} is read,
“the probability of A given (or conditional on) B. If there is dependence in the two
events, then Pr{A and B} = Pr{A|B}Pr{B}. If a sequence of random variables
X1, . . . , Xn is iid noise with df F and zero mean, then

Pr{X1 ≤ x1, . . . , Xn ≤ xn} =
n∏
i=1

Pr{Xi ≤ xi} =
n∏
i=1

F (xi) = F n(x1).

In particular, if g(X1, . . . , Xn) is a function that minimizes the mean squared error
E[(Xn+h − g(X1, . . . , Xn))2], then g is identically zero.

Consider, for example, E[(Xi−1 −Xi)
2]. Multiplying this out, we get

E[X2
i−1] + E[X2

i ]− 2E[Xi−1Xi] = VarXi−1 + VarXi − 2Cov(Xi−1, Xi).

For an iid noise sequence, the last term is zero. Let γX(h) = Cov(Xt+h, Xt), then
γX(h) is called the autocovariance function of {Xt}, where γX(0) = VarX. The
autocorrelation function is given by

ρX(h) ≡ γX(h)

γX(0)
= Cor(Xt+h, Xt).

An iid noise sequence {Xt}, each with mean zero and variance σ2 is referred to as
white noise. A first-order moving average process is defined by

Xt = Zt + θZt−1, t = 0± 1, . . . (2)

where the sequence {Zt} is white noise and θ is a real-valued constant. Such a
process is dependent in time, whereby subsequent values are modified by a constant
involving the previous time step. Note that

Cov(Xt+h, Xt) =


σ2(1 + θ2) h = 0
σ2θ h = ±1
0 |h| > 1

Higher order, say q-order, moving average processes are defined similarly, and have
non-zero covariances between variables within the lag q of each other.
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Another form of dependence pertains to the autoregression process. A first-
order autoregression process is given by

Xt = φXt−1 + Zt, t = 0,±1, . . . (3)

where Zt is again white noise with variance σ2, |φ| < 1. Higher-order autoregres-
sion processes are defined similarly. Note that now

Cov(Xt+h, Xt) = φhγX(0).

It is also possible to have more complicated dependence in the sequence (e.g., an
autoregression moving average process), but the above will suffice for this treat-
ment (in the spirit of keeping it as simple as possible). The reader is referred
to Brockwell and Davis (2002) for more complex time series models.

When faced with data (i.e., without knowing what type of dependence model
might be appropriate), a useful tool for determining what sort of dependence
model might be appropriate is the sample autocorrelation function, ρ̂(h). The
sample autocovariance function γ̂(h) for a sample x1, . . . , xn is defined by

γ̂(h) :=
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), − n < h < n,

and the sample autocorrelation function ρ̂(h) is simply

ρ̂(h) =
γ̂(h)

ˆγ(0)
, − n < h < n.

A graph depicting the autocorrelation function against increasing lags (e.g.,
h = 0 to h = 40) can be useful in diagnosing dependence features. For example,
a sample of size n from an iid noise process follows a normal df with mean zero
and variance 1/n, for large n. Therefore, if a sample is from an iid noise process,
then approximately (1−α)100% of the sample autocorrelations should fall within
the bounds ±z1−α/2/

√
n. Therefore, in an autocorrelation graph with 40 lags, we

expect 40(0.05) = 2 values to fall outside these bounds. For a sample containing
a trend |ρ̂| will display slow decay as h increases. If there is a substantial de-
terministic period, |ρ̂| will exhibit similar behavior with the same periodicity. for
numerous other tests utilizing the sample autocorrelation function, refer to Brock-
well and Davis (2002) section 1.6.

Although more complicated to define (see Brockwell and Davis, 2002, for the
definition), the partial autocorrelation function is another useful tool for discerning
autoregression and moving average models. Both the autocorrelation and partial
autocorrelation functions can be easily graphed with any statistical software pack-
age. If a sample sequence is derived from a p-th order autoregression model, it
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is expected that the first p lags h will be significantly different from zero, and
negligible beyond h = p; this can be determined if about nα values beyond lag p
to be outside the bounds ±z1−α/2/

√
n.

Example 3.1. Graphical displays for assessing de-
pendence.
For this example, simulations from samples of size 1000
each are constructed from different time series models, and
autocorrelation and partial autocorrelation graphs diagnosed.
Here, the R (R Development Core Team, 2008) function
arima.sim is used to make all of the simulations.

Figure 2 shows these graphs for a white noise process.
The autocorrelation function graph has a spike at lag zero
indicating that the correlation of a value with itself is (cor-
rectly) unity. Fewer than one value beyond the zero lag ex-
ceeds the blue dashed lines. Further, no major departures
from zero are present in the partial autocorrelation function
graph, and fewer than 0.05(30) = 1.5 points fall outside the
dashed horizontal lines representing ±1.96/

√
1000 indicating

that white noise is reasonable based on the autocorrelation
function graph.

Figure 3 shows these graphs for a simulated AR(2) model.
Greater than 1.5 values fall outside the horizontal blue lines
in the autocorrelation function graph, and there are two large
spikes significantly different from zero at the first two lags of
the partial autocorrelation graph with fewer than 1.5 values
outside the blue dashed lines beyond the first two lags. This
indicates that the process is not iid noise, and suggests that
an AR(2) model is reasonable for modeling the dependence
in the time series.

Figure 4 shows the sample autocorrelation- and partial
autocorrelation function graphs for a series that was simu-
lated from an MA(1) process. The red dashed lines show the
bounds ±1.96/

√
1000

√
1 + 2ρ̂2(1), where ρ̂(1) is the sample

autocorrelation at lag 1. Because ρ̂(h) is within these bounds
for h > 1, it is reasonable to model the sample as an MA(1)
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process. Note that the partial autocorrelation function graph
suggests an AR(5) (or possibly higher order) model.

As a final example, Figure 5 shows these graphs for a
simulated ARIMA(1,1,1) process. The slow decay in the
autocorrelation graph suggests that an ARIMA process may
be reasonable. In order to diagnose a specific appropriate
model, differencing operations would need to be applied, and
autocorrelation- and partial autocorrelation function graphs
created for their residuals. Nevertheless, in each of Figures 3
through 5, the samples are clearly not independent. For the
more straightforward cases (e.g., that of Figure 3), one could
reasonably employ a parametric bootstrap procedure to ob-
tain confidence intervals that account for dependence. Al-
ternatively, in any of these cases, the lag dependence is clearly
smaller than b

√
1000c = 31, and 31 is substantially smaller

than the size of the sample (n = 1000) so that a block boot-
strap could also be employed in this case. For the cases where
an autoregression is a reasonable model, one can employ the
variance inflation factor (see Gilleland, 2010, section 2.11) to
obtain normal approximation confidence intervals that reas-
onably reflect the dependence in the sample.

4 Between the wheels: Deciding how to apply con-
fidence intervals for multiple fields of a forecast
model

Often in a forecast verification setting, there are multiple verification fields (e.g.,
over time) so that statistics (e.g., root mean squared error (rmse), contingency
tables and their summary statistics, etc.) are often calculated for each field. That
is, for example, a time series of contingency tables are generally available.1 A
question that arises pertains to how the confidence intervals should be calculated
exactly. For example, they could be calculated for each time point (e.g., one could
imagine a time series of hit rate with vertical bars at each point showing the

1This could be thought of as a time series of vectors containing the pertinent information from
the contingency tables from which any contingency table derived statistic can be calculated.
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Figure 2: Sample autocorrelation- (top) and partial autocorrelation- (bottom)
function graphs for a simulated white noise process. Dashed blue lines represent
±1.96/

√
1000. Data were simulated in R (R Development Core Team, 2008) using

arima.sim( list(), n=1000), and the acf and pacf functions were used to cre-
ate the graphs shown here, as well as all subsequent autocorrelation- and partial
autocorrelation graphs in this document.
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Figure 3: Sample autocorrelation- (top) and partial autocorrelation- (bottom)
function graphs for a simulated AR(2) process. Dashed blue lines represent
±1.96/

√
1000. Data were simulated in R (R Development Core Team, 2008) using

arima.sim( list( order=c(2,0,0), ar=c(0.7,-0.5)), 1000).
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Figure 4: Sample autocorrelation- (top) and partial autocorrelation- (bottom)
function graphs for a simulated MA(1) process. Dashed blue lines represent
±1.96/

√
1000, and dashed red lines show the bounds ±1.96/

√
1000

√
1 + 2ρ̂2(1).

Data were simulated in R (R Development Core Team, 2008) using
arima.sim(list( order=c(0,0,1), ma=0.8), 1000).
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Figure 5: Sample autocorrelation- (top) and partial autocorrelation- (bottom)
function graphs for a simulated ARIMA(1,1,1) process. Dashed blue lines represent
±1.96/

√
1000. Data were simulated in R (R Development Core Team, 2008) using

arima.sim(list( order=c(1,1,1), ar=0.75, ma=0.6), 1000).
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confidence intervals), or they could be calculated on the average of the statistics
across time, or they could be calculated on an aggregation of the tables across
time.

Figure 1.1 shows confidence intervals for an aggregation of contingency tables
over time. That is, at each iteration of resampling, the total number of forecast
events are added across tables, and the total number of observed events are added
across tables, and the bias is determined from these values. That is, for j = 1, . . . , n
contingency tables, the estimated bias, call it θ̂, at the i-th iteration is determined
by

θ̂i =

n∑
j=1

{Number of forecast events}j
n∑
j=1

{Number of observed events}j
.

Note that this differs from calculating confidence intervals for the average bias
across time. That is, in general

n∑
j=1

{Number of forecast events}j
n∑
j=1

{Number of observed events}j
6= 1

n

n∑
j=1

{Number of forecast events}j
{Number of observed events}j

.

Confidence intervals for the left hand side of the above equation inform about
the uncertainty pertaining to bias across time, or the between-field uncertainty,
whereas the right hand side informs about uncertainty pertaining to the average
bias across time. Either is correct, but each informs about different types of
uncertainty. When calculated for each field separately, the intervals inform about
the within-field uncertainty.

Example 4.1. Beneath, between and behind
Within-field uncertainty is calculated for a single field (i.e.,
at a single point in time), which can be useful to determine
if the uncertainty is changing over time (e.g., this might in-
dicate some change in the nature of the field, such as fewer
available values). Between-field uncertainty does not inform
about how the uncertainty is evolving over time (i.e., the
value of the statistic for a given field is assumed fixed), but
rather informs about the uncertainty in the aggregated value
of the statistic over time. Average uncertainty, while similar
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to between-field uncertainty, informs about the uncertainty
of the average value of the statistic of interest.

Suppose a verification set (i.e., a forecast f and obser-
vation/analysis o) is available for m time points. Then, we
have f1, . . . , fm paired with o1, . . . , om. For simplicity, say
interest is in the mean error f − o. Suppose further that
ε1j = f1j − o1j, . . . , εnj = fnj − onj are iid normally distrib-
uted for each verification set j. For a given field, the mean

error is estimated by ε̄j =
n∑
i=1

εij/n, and the variance (of er-

rors, εj) by σ̂2
ε,j =

n∑
i=1

(εij − ε̄j)2/(n− 1).

Within-field (1 − α) · 100% normal approximation con-
fidence intervals can be constructed for each field εj, j =
1, . . . ,m by

ε̄j ± z1−α/2σ̂ε,j/
√
n.

Between-field (1 − α) · 100% normal approximation con-
fidence intervals can be constructed by

ε̄± z1−α/2σ̂ε/
√
nm,

where ε̄ =
n∑
i=1

m∑
j=1

εij/(nm) and σ̂2
ε =

n∑
i=1

m∑
j=1

(εij− ε̄)2/(nm− 1).

Finally, (1− α) · 100% normal approximation confidence
intervals for the average of the mean errors is constructed by

ε̄± z1−α/2σ̂ε̄/
√
m,

where ε̄ =
m∑
j=1

ε̄j/m and σ̂ε̄ =
m∑
j=1

(ε̄j − ε̄)2/(m − 1). Notice

that for mean error, the estimated between-field statistic is
the same as that for the average, but that their variance
estimates differ.
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5 How confident do we want to be?
A question often asked of statisticians is, “what level α should I use?" Statisticians
are wont to reply with, “you tell me." In fact, there is no right or wrong answer
to the question, but ultimately it depends on how precise one needs to be. The
lower the confidence level, the narrower the interval because we are less confident
that the true parameter will be inside the interval. Higher confidence levels will
lead to wider intervals because we are more confident that the true parameter will
be within the interval. When unsure about what level to use, it is customary to
report intervals for a few levels (e.g., 95%, 99% and 99.9%) to get a feel for the
sensitivity of the results.

6 What is simultaneous confidence?
When interest is in the joint uncertainty of more than one statistic, or across time
points, spatial locations, etc., then individually calculated intervals will generally
be too narrow to make inferences about the joint values. Most software packages
that calculate notches on box plots, giving typically the 95% confidence intervals
about the median, incorporate a confidence level that approximates a joint uncer-
tainty so that the medians can be compared for pairs of box plots (see Gilleland,
2010, section 2.4 for more about the normal approximation confidence interval for
the median).

The issue is related to multiple testing when conducting statistical hypothesis
tests, for example, at many grid locations. If a 5% level test is passed at 1000
individual locations, it is expected that 50 of those tests are wrong. Therefore,
it is not valid to speak about regions of significance without accounting for this
issue.2 See Gilleland (2010) section 2.12 for more about simultaneous confidence
intervals including a simple method for calculating them.

7 How do assumption violations affect confidence
intervals? An ad-hoc study using simulations

In this section, we will simply simulate many samples from each of several types of
situations, and apply different statistics to those samples. Confidence intervals will
be obtained using both the normal approximation (using the standard deviation of
the various sample statistics to derive a standard error approximation for statistics
without easily obtained estimates) and the bootstrap (BCa) method.

2In this context, there is also likely an issue with spatial dependence.
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Using the techniques described in Gilleland (2010) appendix A.3, we first sim-
ulate two forecasts and one observation triplets (i.e., three correlated random vec-
tors) to obtain 1000 samples of size 1000 each, for each triplet. In each case, a
baseline mean of ten and standard deviation of two are allowed to vary for each
sample (and each member of the triplet individually) by the addition of a standard
normal random number for the mean, and a random uniform value from 1× 10−8

to three for the standard deviation. Additionally, the amount of correlation is
allowed to vary according to a uniform df from one half to one, but the correl-
ation between one forecast and the observed vector is the same as that between
the other forecast and the observation for each triplet (this is done for simplicity).
For this first group, no temporal correlation is added, so it is reasonable to expect
that the samples are iid. the first question we want to examine is how well various
verification statistics adhere to the assumption of normality.

It is expected that the mean error would follow a normal df. Figure 6 shows a
normal qq-plot for the simulated mean errors across the 1000 samples for one of
the two forecasts. The points lie in a reasonably straight line suggesting that the
assumption of normality is reasonable for this statistic. The normal qq-plot for
the simulated frequency bias statistics for these same samples, on the other hand,
shows departures from the straight line, indicating that the normality assumption
is not valid for the bias statistic (Figure 7). How far the departure is from normality
for bias depends greatly on the threshold. For the simulations here, the lowest
threshold of two shows an S-shaped curvature, but otherwise relatively straight;
indicating that the df for bias using a threshold of two for these simulations is
skewed or has heavier tails than the normal df. The two moderately low thresholds
(five and eight) show a concave curvature, where the lower of the two is nearly
straight. The highest two thresholds show a high amount of concavity, and are
clearly not normally distributed.

Figure 8 shows the normal qq-plot for the sample of 1000 rmse values. Given
that the rmse is an average value, a normality assumption is not out of the question.
As the qq-plot is relatively straight, such an assumption may be valid for this
statistic. The difficulty for calculating normal approximation confidence intervals
for rmse, however, concerns estimation of its standard error.

Finally, we take a look at the hit rate for the same thresholds as used for
frequency bias (Figure 9). Of concern here is that theoretically the hit rate should
be approximately normal because n = 1000 is reasonably large and the statistic
is a proportion (Gilleland, 2010, section 2.8.1). However, for all of the thresholds,
the normal qq-plots exhibit severe departures from normality.

Because the confidence intervals for variance, standard deviation and correla-
tion are all derived from the underlying sample’s being iid normally distributed,
but do not use the usual normal approximation interval, they are not investigated
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Table 2: 95% confidence intervals for some simulated verification statistics from
one sample of the 1000 simulated samples. Standard errors for rmse and bias are
estimated by the standard deviations of these statistics across all 1000 samples.
Hit rate normal approximation confidence intervals are calculated using Wald’s
interval (see Gilleland, 2010, section 2.8.1 Eq (11)).

Statistic Normal approximation Bootstrap (BCa)
(estimate)

Mean Error (−1.69, − 1.33) (−1.69, − 1.34)
(≈ −1.51)

rmse (1.49, 4.99) (3.12, 3.39)
(≈ 3.24)

Bias (threshold=5) (0.65, 1.03) (0.82, 0.87)
(≈ 0.84)

Bias (threshold=14) (−8.99, 13.82) (2.01, 2.92)
(≈ 2.41)

Hit rate (threshold=5) (0.82, 0.87) (0.82, 0.87)
(≈ 0.84)

Hit rate (threshold=14) (0.92, 0.95) (0.86, 0.98)
(≈ 0.93)

here.
Table 2 normal approximation and bootstrap (BCa) confidence intervals for

mean error, rmse, bias and hit rate for one of the 1000 simulated forecast-observation
pairs. Of particular note is that the intervals for mean error (which should follow
a normal df) are nearly identical between the two methods. On the other hand,
the rmse intervals differ wildly, despite that the normal qq-plot for rmse based on
the simulated samples follows closely to a straight line (Figure 8). In this case, the
problem could be the estimate for the standard error of rmse, which was taken here
to be the standard deviation of the rmse values obtained across the 1000 samples
(≈ 0.89), and may be too large. For both bias statistics (using thresholds of five
and fourteen), the intervals differ greatly, where the normal intervals are too wide
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Figure 6: Normal qq-plot for 1000 simulated mean errors.
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Figure 7: Normal qq-plots for 1000 simulated frequency bias statistics, using
thresholds of two, five, eight, eleven and fourteen (from upper left corner mov-
ing from left to right in each row successively).
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Figure 8: Normal qq-plot for 1000 simulated root mean squared errors.
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Figure 9: Normal qq-plots for 1000 simulated hit rate statistics, using thresholds
of two, five, eight, eleven and fourteen (from upper left corner moving from left to
right in each row successively).
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and unrealistically symmetric. It is also interesting to note that for the threshold
of five, the bias estimate and bootstrap confidence intervals are identical, which is
a result of there not being any cases of a forecast event associated with no observed
event for this threshold and particular simulation; subsequently the two statistics
are identical. Naturally, the normal approximation intervals differ for this statistic
because different standard errors for the statistic are used. Also in this case, the
normal approximation and bootstrap intervals for hit rate (threshold=5) are very
close (being identical after rounding to two decimal places as in the table), in-
dicating that the normal approximation interval is valid despite that the qq-plots
suggest otherwise.

What is clear from these simulation exercises is that in the face of iid samples,
the iid bootstrap confidence intervals (using the BCa method) are always valid,
but the normal approximation intervals are only valid for statistics whose df’s are
approximately normal. Because the bootstrap procedure requires resampling over
many iterations (and the BCa requires an additional series of resampling), it can
be slow when faced with very large samples, whereas the normal approximation
intervals are quick.

Table 3 shows 95% iid bootstrap confidence intervals for some common verific-
ation scores for a particular simulation of two forecasts with observation triplet.
Looking at the mean error statistic, the estimate for the simulated forecast 1 falls
within the bounds for forecast 2, but the difference bounds for this statistic show
that the mean error for forecast 1 is significantly different from that of the second.
In this case, the estimate of mean error for the second simulated forecast does not
fall within the bounds of the first, but as is seen in Figure 1, it is possible for
both estimates to fall within the bounds of the other, but still have the differences
be significant. The rmse for these two cases are substantially different from each
other, and this is reflected by zero’s being well outside the difference intervals; in
this case neither estimate falls within the other’s bounds. The story is similar for
the rest of the intervals, and clearly, the simulated forecast 1 is superior to the
simulated forecast 2 for this realization of the verification triplet.

Figure 10 shows plots of a simulated time series from an AR(2) model. Suppose
the simulation represents f − o for some verification set, and the data are not
independent. The normal qq-plot confirms that the error simulation series are
normally distributed, but the autocorrelation- and partial autocorrelation function
graphs suggest that they are not independent; confirming that an AR(2) model is
appropriate for the simulated data.

For simplicity, interest will be in the mean of the simulated series (i.e., the mean
error), which should reasonably follow a normal df. Table 4 shows 95% confidence
intervals obtained from various methods. The estimated mean (error) is about
0.03, and the estimated correlation coefficients are ρ̂1 ≈ 0.69 and ρ̂2 ≈ −0.42.
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Figure 10: Simulation of size 1000 from an AR(2) model with ρ1 = 0.7 and ρ2 =
−0.4. Top left is time series, top right is the normal qq-plot, and autocorrelation-
and partial autocorrelation function graphs are shown in the bottom row.
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Table 3: IID Bootstrap (BCa) 95% confidence intervals for verification statist-
ics from two simulated forecasts against the same verification series, and for the
differences between statistics for each forecast.

Statistic (Forecast 1, 2, or 1− 2) 95% IID Bootstrap (BCa) CI
Estimate

Mean error (1) ≈ −0.48 (−0.54, − 0.43)

Mean error (2) ≈ −1.51 (−1.69, − 1.33)

Mean error difference (1− 2) ≈ 1.02 (0.84, 1.22)

rmse (1) ≈ 1.03 (0.99, 1.08)

rmse (2) ≈ 3.24 (3.10, 3.39)

rmse difference (1− 2) ≈ −2.21 (−2.36, − 2.06)

bias (1) ≈ 1.00 (1.00, 1.01)
(threshold = 5)

bias (2) ≈ 0.84 (0.82, 0.87)
(threshold = 5)

bias difference (1− 2) ≈ 0.16 (0.13, 0.18)
(threshold = 5)

bias (1) ≈ 0.41 (0.28, 0.55)
(threshold = 14)

bias (2) ≈ 2.41 (2.03, 2.94)
(threshold = 14)

bias difference (1− 2) ≈ −2.00 (−2.49, − 1.62)
(threshold = 14)
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Table 4: 95% confidence intervals for the mean (≈ 0.03) of the simulated series
shown in Figure 10. Normal approximation with variance inflation factor assumes
aan AR(1) model.

Normal approximation (−0.04, 0.11)
IID Bootstrap (BCa) (−0.04, 0.12)
Normal approximation (−0.14, 0.21)
(with variance inflation factor)
Block Bootstrap (l = b

√
1000c) (−0.06, 0.12)

Not surprisingly, the normal approximation and iid bootstrap are very close to
each other. Both assume independence in the data, and because the normality
assumption is valid, the two intervals should be similar. The normal approximation
with variance inflation factor assumes, for simplicity, an AR(1) model for the
data (see Gilleland, 2010, section 2.11 Eq. (17) and (19)), which is still not valid
for this sample, but demonstrates that the confidence interval widens because
effectively there are fewer sample points than 1000. The block bootstrap using
the circular block bootstrap (CBB) with block length of 31 (see Gilleland, 2010,
section 3.4) is also shown. This interval is wider than the iid bootstrap and normal
approximation (without variance inflation factor) intervals, but narrower than the
variance inflated normal approximation interval. Although a better interval might
be obtained using a parametric bootstrap with an AR(2) model, the CBB interval
is quite reasonable.
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between-field uncertainty, 15
block bootstrap

circular block, 24

iid noise, 7

variance inflation factor, 24

white noise, 7
within-field uncertainty, 15
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