From ensemble forecasts to predictive distribution functions

By Jochen Bröcker and Leonard A. Smith, Max-Planck-Institut für Physik komplexer Systeme, 01187 Dresden, Germany; Centre for the Analysis of Time Series, London School of Economics, London WC2A 2AE, United Kingdom

(Manuscript received 26 February 2007; in final form 25 March 2008)

ABSTRACT

The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called 'affine kernel dressing' (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.

1. Introduction

Ensemble forecasts consist of several simulations of the future evolution of the dynamical process under concern (see e.g. Toth et al., 2003). In principle, ensemble forecasts allow us to convey additional information on forecast uncertainty (Tennekes, 1988), which is invaluable for informed decision making (Taylor and Buizza, 2003; Richardson, 2003a,b; Roulston et al., 2003). In both scientific studies as well as practical applications, distribution functions are often more convenient to manipulate than a set of point values. The question then arises how to transform an ensemble into such a distribution function, a task often referred to as statistical post-processing of ensemble forecasts in Raftery et al. (2005); Wilks (2006); Wilks and Hamill (2007) or ensemble interpretation in Jewson (2003a), the latter term being used in this paper. Any particular method for interpreting ensembles will be referred to as an ensemble interpretation method (other authors, e.g. Wilks, 2006; Wilks and Hamill, 2007, use the term ensemble MOS method).

Ensemble interpretation methods generally differ due to the different families of distribution functions employed in building the ensemble interpretation and the way it is actually built. Both aspects are discussed in this paper. As to the different families of distribution functions, two particular approaches are considered here. The first one is referred to as kernel dressing and consists of replacing individual ensemble members by kernel functions. In the second approach, the ensemble is replaced by a parametrized distribution function, where the parameters of the distribution function have to be represented as functions of the original ensemble. This approach will be referred to as distribution fit or DF interpretation. Both approaches typically involve parameters which have to be determined.

Approaches to build the ensemble interpretation method differ in what the ensemble is taken to represent. In the simplest case,
the ensemble is considered a collection of equally likely scenarios of reality, drawn from the same distribution as the verification (a perfect ensemble). This approach suggests that ensemble interpretation is accomplished by approximating this underlying distribution, for example, by parametric estimation techniques (see e.g. Mood et al., 1974, Chapter VII) or kernel estimates (Silverman, 1986).

Although ensembles have been used to great effect even when assumed to be perfect (Wilks, 2002), we argue that a different paradigm is available which naturally includes the case where ensemble members and verifications do not share the same distribution. Nor need we assume that any one of the models in hand is true in any sense. Here, we are interested in a distribution of the verification given the information contained in the ensemble. A formalism for constructing such distributions could take into account that ensembles and corresponding verifications are not draws from the same or at least fairly similar distributions, but entirely different ones.

This paradigm defines ensemble interpretation in a much broader sense than just interpolating a distribution function underlying the ensemble. In fact, there is no need to assume that ensembles are draws from distributions at all. As a simple example, it will be demonstrated that a mere linear transformation of the ensemble already brings about a significant improvement in a predictive performance of kernel dressing. Finding this linear transformation will be neither a preliminary nor a subsequent step to dressing, but integral part of it. Inasmuch as dressing involves finding unspecified parameters of the dressing method, we consider dressing a generalization of statistical learning (Hastie et al., 2001).

The performance of forecast distributions is evaluated using scoring rules (Selten, 1998; Gneiting and Raftery, 2007). Some scores can be applied to the raw ensemble itself (e.g. continuous ranked probability score (CRPS) score Gneiting and Raftery, 2007), while others can be applied to smoother probability assignments only, as provided, for example, by ensemble interpretation methods. Thus, ensemble interpretations render the application of those scores to ensemble forecasts feasible. In this paper, we focus attention on the Ignorance score (Good, 1952; Roulston and Smith, 2002). Strengths and weaknesses of this score are clarified as well.

Techniques for ensemble interpretation are the subject of Section 2, where state-of-the-art ensemble interpretation methods are revisited and a new affine kernel dressing (AKD) method is presented. A comparison of these ensemble interpretation methods in terms of their mathematical properties is subject to Section 3. Scoring rules are discussed briefly in Section 4, along with the details of how to optimize the performance of ensemble interpretation methods, while questions of robust estimation and the value of blending in the climatological distribution are discussed in Section 5. In Section 6, we apply the ensemble interpretation techniques to temperature forecasts at London Heathrow and Heligoland (German Bight) as well as to the Lorenz63 system. The AKD method is shown to be capable of dealing with the imperfect ensembles more adequately than common ensemble interpretation methods in these cases. Furthermore, the Lorenz63 example demonstrates the insufficiency of Gaussian DF interpretations.

2. Interpreting Ensemble Forecasts

This section introduces a new dressing method referred to as AKD in the context of three well-known methods, namely Gaussian DF interpretation (GDF), standard kernel dressing methods (SKD) and Bayesian model averaging (BMA) (see e.g. Hoeting et al., 1999; Roulston and Smith, 2003; Raftery et al., 2005; Wang and Bishop, 2004; Wilks, 2006). We use the following notation throughout the paper. By

$$x = [x_1, \ldots, x_d],$$

we denote an ensemble with d ensemble members. Typically, different ensemble members have different dynamical and statistical properties, depending on the ensemble generation scheme. In this paper though, we treat all ensemble members equally, or in other words, the ensemble interpretation methods considered in this paper do not depend on the ordering of the ensemble members. If some of the x_i need to be treated differently than others, for example if they come from different models\(^3\), a superscript $x_i^{(j)}$ should be used. This case is to be distinguished from an ensemble in a higher dimensional space. Neither multimodel ensembles nor ensembles in high-dimensional spaces are considered in this paper. In general, the ensemble is a function of time, which we denote by $x(t)$, while we write $y(t)$ for the verification, that is, the quantity to be forecast. The number of ensemble members d might even change over time. The ensemble has a mean and a variance, which are defined as

$$m(x) = \frac{1}{d} \sum_{i=1}^{d} x_i,$$

$$v(x) = \frac{1}{d} \sum_{i=1}^{d} [x_i - m(x)]^2,$$

respectively. Finally, $p(y; x, \theta)$ is a probability density function derived from the ensemble x, where θ denotes further parameters. In other words, $p(y; x, \theta)$ denotes the interpreted ensemble as a probability density function, given the original ensemble. In fact, a probability density function need not be the goal, as will be discussed at the end of Section 4.

We first consider Gaussian DF interpretations (GDF) which can be written as

$$p(y; x, \theta) := \frac{1}{\sqrt{v}} K \left(\frac{y - \mu}{\sqrt{v}} \right),$$

\(^3\)The unperturbed ensemble member (the ‘control’) could be treated differently, which we will not do in this paper though.
where K is a standard Gaussian density. Depending on the problem, other distributions can be more appropriate, for example Weybull or Γ distributions. The parameters μ and $\sqrt{\nu}$ are the mean and the standard deviation of the distribution, respectively. Setting μ and $\sqrt{\nu}$ equal to the mean and the standard deviation of the ensemble is a possible choice (Wilks, 2002), but by doing so we would approximate the distribution of the ensemble, rather than the distribution of the verification given the ensemble, which is our goal. A conceptually different approach is to determine $\sqrt{\nu}$ and μ by functions of the ensemble and some free parameters θ, so that the DF interpretation shows good forecast performance. A variant of Gaussian DF interpretation following this philosophy was presented by Jewson (2003a,b), who suggested a mean μ and standard deviation $\sqrt{\nu}$ depending on the raw ensemble x as follows

$$\mu = r_1 + r_2 \cdot m(x),$$ \hspace{1cm} (5) $$\sqrt{\nu} = s_1 + s_2 \cdot \nu(x).$$ \hspace{1cm} (6) $$\nu$$

Thus, $\sqrt{\nu}$ and μ are determined by linear functions of the standard deviations and the mean of the ensemble, respectively. A very similar interpretation method was suggested by Gneiting et al. (2005), who replaced eq. (6) by $v = s_1 + s_2 \cdot v(x)$. The parameters $\theta = [r_1, r_2, s_1, s_2]$ are free parameters, for which $r_1 = 0, r_2 = 1, s_1 = 0, s_2 = 1$ are reasonable initial choices. The linear relationships in eqs. (5) and (6) might be unable to cope with ensembles which are grossly different from the verification. The key insight of Jewson (2003a,b) and Gneiting et al. (2005) is that the parameters r_1, r_2, s_1, s_2 have to be determined according to forecast performance, rather than to represent the distribution of the ensemble members. Determining the parameters r_1, r_2, s_1, s_2 thus hinges on what counts as ‘good performance’. Both the issue of finding the parameters as well as precise definitions of performance will be discussed in Section 4. This approach is distinctly different from, for example, Wilks (2002), where the probability distribution is fitted to the ensemble, without any reference to the verification.

An obvious shortcoming of Gaussian DF interpretation is that the shape of the dressed ensemble is invariably Gaussian. A more versatile method is provided by kernel dressing. Various versions of kernel dressing have been considered in the literature (Roulston and Smith, 2003; Raftery et al., 2005; Wang and Bishop, 2004; Wilks, 2006). A general way to present the kernel dressing approach reads as follows

$$p(y; x, \theta) := \frac{1}{d \sigma} \sum_i K \left(\frac{y - ax_i - \omega}{\sigma} \right).$$ \hspace{1cm} (7) $$p$$

Hence, a kernel-dressed ensemble is a sum of bumps, with one bump replacing each ensemble member. The shape of the bumps is determined by the kernel K. Each bump is centred at $ax_i + \omega$, where x_i is the ith ensemble member. Thus, a scales the ensemble, while ω acts as an offset. The width of each bump is determined by the bandwidth σ. As with GDF, a, σ and ω are quantities that might depend on the ensemble and on a parameter vector θ in a way we have to specify. Note that the bandwidth σ has to be positive. For simplicity, throughout this paper, the kernel K will be a standard Gaussian density

$$K(\xi) := \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} \xi^2 \right).$$ \hspace{1cm} (8) $$K$$

Hence, kernel dressing results in a sum of d Gaussians, in contrast to GDF, which gives a single Gaussian. Possible advantages of using different kernels with finite support like the Epanechnikov kernel (Silverman, 1986) are discussed in Section 5.

A wide variety of different kernels have been employed in similar or related circumstances (Roulston and Smith, 2003; Silverman, 1986). All results below apply to kernels which are normalized and positive, and furthermore have mean zero and unit variance.\(^4\) We remark that the Gaussian kernel employed here is furthermore symmetric, but this property is not used in this paper.

From the properties of the kernel immediately follows that the ensemble interpretation $p(y; x, \theta)$ in eq. (7) is a positive and normalized probability density function. It is illustrative to compute the mean

$$\mu := \int y \ p(y; \ldots) \ dy$$ \hspace{1cm} (9) $$\mu$$

and the variance

$$\nu := \int (y - \mu)^2 \ p(y; \ldots) \ dy$$ \hspace{1cm} (10) $$\nu$$

of the ensemble interpretation (eq. 7). We will now prove the following two identities on μ and ν, which we will need later:

$$\mu = \omega + a \frac{1}{d} \sum_i x_i = \omega + am(x),$$ \hspace{1cm} (11) $$\mu$$

$$\nu = \sigma^2 + a^2 \frac{1}{d} \sum_i [x_i - m(x)]^2 = \sigma^2 + a^2 v(x).$$ \hspace{1cm} (12) $$\nu$$

The first eq. (11) states that the mean value of the ensemble interpretation is equal to the mean value $m(x)$ of the ensemble, scaled by the parameter a and shifted by the parameter ω. The second eq. (12) states that the variance of the ensemble interpretation is likewise equal to the variance $v(x)$ of the ensemble, scaled by the parameter a^2 and shifted by the parameter σ^2. Note, however, that a, σ and ω might depend on the ensemble as well, as mentioned above. To prove eq. (11), note that by substituting from

\(^4\)As long as the kernel has a mean m and a variance s at all, we can always obtain mean zero and unit variance by using the kernel $\frac{1}{\sqrt{2\pi}} K(\frac{\xi - m}{s})$ instead of K. The Cauchy kernel provides an example of a kernel having neither a mean nor a variance.
by the average of the individual variances plus the dispersion of
overall variance of a model which is itself an average is given

\[\int \frac{y p(y; \ldots)}{d} \, dy = \frac{1}{d} \sum_{i} \int y K \left(\frac{y - ax_i - \omega}{\sigma} \right) \, dy \]

\[= \frac{1}{d} \sum_{i} (z + ax_i + \omega) K(z) \, dz \]

\[= a \frac{1}{d} \sum_{i} x_i + \omega \]

\[= \omega + a m(x), \]

where we first substituted \(z \) for \(\frac{y - ax_i - \omega}{\sigma} \), then used that the kernel
is normalized and has zero mean and finally employed the def-
inition eq. (2) of the ensemble mean. To derive eq. (12), again
substituting from eq. (7), we get along similar lines

\[\int y^2 p(y; \ldots) \, dy = \frac{1}{d} \sum_{i} \int y^2 K \left(\frac{y - ax_i - \omega}{\sigma} \right) \, dy \]

\[= \frac{1}{d} \sum_{i} \sigma^2 + (ax_i + \omega)^2 \]

\[= \sigma^2 + \frac{1}{d} \sum_{i} (ax_i + \omega)^2. \]

(13)

Furthermore, we expand

\[\frac{1}{d} \sum_{i} \int (ax_i - am(x))^2 \, dy \]

\[= \frac{1}{d} \sum_{i} (ax_i + \omega - am(x) - \omega)^2 \]

\[= \frac{1}{d} \sum_{i} (ax_i + \omega)^2 - [\omega + am(x)]^2. \]

(14)

Now employing eqs. (13), (11) and then (14), we get

\[v = \int y^2 p(y; \ldots) \, dy - \mu^2 \]

\[= \sigma^2 + \frac{1}{d} \sum_{i} (ax_i + \omega)^2 - [\omega + am(x)]^2 \]

\[= \sigma^2 + a^2 \frac{1}{d} \sum_{i} (x_i - m(x))^2, \]

which establishes eq. (12). For constant \(a, \sigma, \omega \), these equations
follow from eqs. (4) and (7) in Raftery et al. (2005). All these
identities are special instances of the well-known fact that the
overall variance of a model which is itself an average is given
by the average of the individual variances plus the dispersion of
the models.

The kernel dressing methods discussed in this paper (and in
fact most other kernel dressing methods we know of) differ only in
how the parameters \(\sigma, \omega \) and \(a \) are determined as functions of
\(x \) and \(\theta \). For AKD, \(\sigma \) and \(\omega \) are set to

\[\omega = r_1 + r_2 \cdot m(x), \]

(15)

\[\sigma^2 = h_S^2 \cdot [s_1 + s_2 \cdot a^2 v(x)]. \]

(16)

Here, \(h_S \) is Silverman’s factor (see Silverman, 1986)

\[h_S = 0.5 \cdot [4/(3d)]^{1/5}, \]

the meaning of which will be explained below. Substituting
eq. (15) for \(\omega \) in eq. (11) and eq. (16) for \(\sigma \) in (12), we get the relations:

\[\mu = r_1 + (a + r_2) \cdot m(x), \]

(17)

\[v = h_S^2 s_1 + a^2 (h_S^2 s_2 + 1) \cdot v(x). \]

(18)

The dressing approach as presented in eqs. (15) and (16) leaves
the free parameter vector \(\theta := [r_1, r_2, s_1, s_2, a] \) to be determined.
There is a different way to write eqs. (15) and (16) which reveals
more about the structure of AKD and the role of Silverman’s
factor. Combining eqs. (15) and (16), it is easy to see that the
dressed ensemble eq. (7) reads as

\[p(y; x, \theta) := \frac{1}{d} \sum_{i} K \left(\frac{y - z_i}{\sigma} \right). \]

(19)

where

\[z_i = ax_i + r_2 m(x) + r_1. \]

(20)

\[\sigma^2 = h_S^2 \cdot [s_1 + s_2 \cdot v(z)]. \]

(21)

The relations (19)–(21) allow for the interpretation of AKD as
dressing the ensemble \(z \), which is obtained from the original
ensemble \(x \) through the transformation in eq. (20). This
transformation will henceforth be referred to as an affine ensemble
transform. Hence, also the name AKD. Further possible general-
izations of dressing could be obtained by replacing the affine
ensemble transform (i.e. eq. 20) by more general ensemble trans-
forms, which are discussed in Appendix B. Note that the affine
ensemble transform acts on the ensemble as a whole and cannot be
represented as a function acting on each ensemble member
individually. We stress that the ensemble transformation (eq. 20)
as well as the dressing (eq. 19) are both integral parts of the entire
method, and they should not be considered as separate steps. In
other words, the parameters in eqs. (19) and (20) will generally
depend on each other.

From the theory of kernel density estimates (Silverman, 1986),
we take the ansatz eq. (21) for the bandwidth \(\sigma \). In the highly
idealized situation that the transformed ensemble \(z \) is Gaussian
and perfect, \(\sigma^2 = h_S^2 \cdot v(z) \) is a close to optimal choice for the
bandwidth. Although we do not assume \(z \) to be either Gaussian
or perfect, using Silverman’s factor conveniently scales \(s_1 \) and
\(s_2 \) to ranges around 1.

In Section 6, AKD will be compared to Gaussian dressing as
well as a more standard version of kernel dressing, henceforth
referred to as SKD, which obtains by setting \(a = 1, r_2 = 0 \) and

\[5 \] Which should, in fact, be ‘affine ensemble transform kernel dressing’.
\(s_1 = 0 \). That is, standard kernel dressing allows for a fixed offset \(r_1 \) to all ensemble members as well as a bandwidth correction factor of \(s_2 \).

Another special case emerges by setting \(r_2 = 0, s_2 = 0 \). This ensemble interpretation method was studied by Wilks (2006), who introduced it as a special case of Bayesian model averaging (BMA, Raftery et al., 2005). As was pointed out in Wilks (2006), the general BMA technique might be justified if the ensemble members are expected to have significantly different error statistics, as for example in ensembles of different numerical weather models. For the initial condition ensembles considered below, however, the ensemble members are expected to have quite similar statistics, whence a general BMA approach would be overly complex.

3. Properties OF AKD, SKD and GDF

In this section, a brief look is taken upon the advantages and shortcomings to be expected of the four dressing methods presented. It is plausible that any kernel dressing is better than Gaussian dressing if (but not only if) the ensemble \(x(t) \) and the verification \(y(t) \) are independent draws from the same underlying distribution (perfect ensemble) and the ensemble is sufficiently large. The reason is that with increasing ensemble size (and suitable choice of the bandwidth \(\sigma \)), the kernel-dressed ensemble will approach the underlying density. Although we did not venture to find a proof, analogy to density estimation problems (Silverman, 1986) suggest that a necessary criterion would seem to be \(\sigma(d) \to 0 \) if the ensemble size \(d \) goes to infinity, but slow enough so that still \(d \cdot \sigma(d) \to \infty \), that is \(\sigma(d) \) shrinks slower than \(d \). This is expected, for example, in best member dressing (Roulston and Smith, 2003). Hence, we would expect that, if the ensemble is perfect, yet not Gaussian but, for example, bimodal (Smith, 1997, 2002), kernel dressing will eventually outperform Gaussian dressing. Even if the perfect ensemble is actually a draw from a Gaussian, it is not clear that Gaussian dressing is better than kernel dressing, since the parameters \(\omega \) and \(\sigma \) in eqs. (5) and (6) still need to be estimated from the ensemble. It can be shown (J. Penzer, personal communication, 2006) that maximum likelihood estimates of these parameters are suboptimal, and a \(t \)-distribution should be used rather than a Gaussian (Johnson and Wichern, 1992). This effect is essentially due to the small ensemble size.

Gaussian dressing, on the other hand, is expected to beat standard kernel dressing when the ensemble \(x(t) \) is reasonably Gaussian but overdispersive, or in other words, the ensemble members are further away from each other than from the verification. Since \(\sigma^2 \) is positive, eq. (12) reflects the basic result (see e.g. Wilks, 2006) that the variance of the standard kernel-dressed ensemble (i.e. if \(\alpha = 1 \)) is always larger than the variance of the raw ensemble, no matter how \(\sigma \) is determined. AKD, in contrast, allows for the variance of the dressed ensemble to be a linear function of the variance of the raw ensemble, a feature it shares with Gaussian dressing and BMA. In operational numerical weather prediction, the ensemble spread is typically too small on average, leading to convex Talagrand diagrams (Wilks, 1995; Hamill, 2001). Nevertheless, eq. (12) is a relation for each individual ensemble. Independent of whether the ensemble variance is too large or too small on average, affine kernel dressing allows for a more flexible relationship between the variance of the ensemble and the variance of the dressed ensemble than standard dressing in either case. A distinct advantage of AKD over BMA emerges from the relations (17, 18). For AKD, these two relations are independent. This would, in principle, permit to debias the ensemble mean and simultaneously optimize the spread–skill relationship. The relations (eqs. 5 and 6) show that the same is true for GDF. For BMA though, \(r_2 = 0 \) and \(s_2 = 0 \), in which case the linear part in both the relations (eqs. 17 and 18) is determined by \(\alpha \). In other words, having debiased the ensemble, there remains little which can be done for a better spread–skill relationship. As demonstrated in Section 6, AKD offers significant benefits when applied to numerical weather predictions for which the square error of the ensemble mean is not well represented by the ensemble variance. To the extent that it is Bayesian, BMA provides a principled framework for constructing probability forecasts. This comes with the cost of assuming that one of the models is true (Hoeting et al., 1999) or alternatively that the available model class admits a perfect model.

While all variants of kernel dressing borrow from and bear some resemblance to Kernel Estimation (KE), a technique employed to estimate probability density functions (Silverman, 1986), we stress that kernel dressing (and in fact ensemble interpretation in general) rests on different assumptions than kernel estimation. The latter attempts to fit a probability density function to a single and unchanging archive of points. These points are simultaneously forecasts and verifications. Future points, although not expected to be equal to any point in the archive, are nevertheless assumed to be drawn from the same source. Thereby, in KE, the ensemble and the verification are draws from the desired distribution. For kernel dressing of ensemble forecast, there is but one verification for every ensemble, and typically, the verification is not drawn from the ensemble, that is, the ensemble is demonstrably not perfect. The improved dressing method as presented in eqs. (19), (20) and (21) looks superficially similar to a kernel estimator applied to the transformed ensemble \(z \). It should be kept in mind though that eventually all parameters of kernel dressing are determined simultaneously and depend on each other, thus the ensemble transform (eq. 20), the choice of the bandwidth (eq. 21) and the dressing (eq. 19) cannot be separated.

4. Scoring and Training

The ensemble interpretation methods presented in the Section 2 depend on the as yet unspecified parameters \(\theta \). We consider the problem of determining the parameters of ensemble
interpretations to be similar to the learning problem of statistics (Vapnik, 1998; Hastie et al., 2001). In the latter problem, the objective is to fit a functional relationship between certain inputs and verifications, based on a training set of input-verification pairs. The functional relationship is picked from a range of functions or model class according to performance. An algorithmic procedure that tunes the parameters according to performance over a training set will be referred to as a training algorithm. At the core of most training algorithms lies an iterative procedure which optimizes the expected performance as a function of the parameters. A more classical term for training algorithm is ‘estimation technique’. The difference is only a linguistic one, but estimation might imply the existence of a true parameter (like a physical quantity) that is to be estimated. The parameters of ensemble interpretation methods though need not to have any physical interpretation, whence the term training algorithm seems more appropriate here.

When interpreting ensembles, the objective is to find a probabilistic relationship between the inputs and verifications, where the model class consists of sums of kernel functions, and the training set consists of ensemble-verification pairs (hence, the training set is often referred to as forecast archive). The unspecified parameters should be determined solely by forecast performance, not by any a priori assumptions, like, for example, that the ensemble and the verification are drawn from one and the same underlying distribution. This obviously involves finding appropriate performance measures or scoring rules for probabilistic forecasts, which we will turn to now.

A scoring rule is a function $S(p(y), Y)$, where $p(y)$ is a probability density and Y is the verification. In this paper, scoring rules are defined like cost functions: small scores indicate better forecast skill. For example, the Ignorance Score is defined by the scoring rule

$$S(p(y), Y) = -\log[p(Y)].$$

The Ignorance score is related to the log likelihood (Mood et al., 1974; Bröcker and Smith, 2007) and plays an important role in gambling theory. Another interesting scoring rule (although not used in this paper) is the Proper Linear Score. It is defined as

$$S(p(y), Y) = \int p^2(z) \, dz - 2p(Y). \quad (22)$$

It should be noted that the Ignorance depends only on the single number $p(Y)$, while the Proper Linear Score depends on the entire functional form of $p(y)$. This particular property of the Ignorance is called locality. Local scores are typically cheaper to evaluate than non-local scores. Computing functionals of the probability density (such as the integral in eq. 22) are often very costly. As noted by Gneiting et al. (2005), similar reasons have hampered the use of the CRPS score.

It turns out that not all conceivable candidates for scoring rules yield useful scores. An indispensable property of scores is propriety. Roughly speaking, a score is proper if $p(y)$ achieves an optimal (i.e. minimal) expected score whenever the verification is drawn from $p(y)$. A scoring rule is strictly proper if that happens only if the verification is drawn from $p(y)$. Propriety is a property only of the scoring rule itself. The Ignorance and the Proper Linear Score are proper (for a proof of this fact as well as a discussion of the notion of propriety see Bröcker and Smith, 2007). A general result due to Bernardo (1979) states that all smooth, proper and local scores are affine functions of the Ignorance. Proper scores, in general, have been characterized by Gneiting and Raftery (2007).

In evaluating forecast systems, one is not only concerned with a single probability density function $p(y)$ but also with a sequence $p_n(x)$ of probability density functions and corresponding verifications Y_n which can be employed to estimate the performance of the forecast system, in other words, the expected score (with respect to a proper scoring rule S). To this end, define the empirical score:

$$S_N := \frac{1}{N} \sum_{n=1}^{N} S[p_n(x), Y_n]. \quad (23)$$

The empirical score values the average performance of the forecast system over all samples in the archive. In the case of dressed ensembles, the probability density functions are time depend through the ensemble $x(n)$, that is $p_n(x) = p[y; x(n), \theta]$ where θ denotes the ensemble interpretation parameters. In the case of AKD, for example, $\theta = [\alpha, r_1, r_2, s_1, s_2]$. Replacing the expression for $p_n(y)$ in eq. (23) and using the Ignorance score, we obtain

$$S_N(\theta) = \frac{1}{N} \sum_{n=1}^{N} -\log [p(Y_n, x(n), \theta)]. \quad (24)$$

In eq. (24), the empirical score of the ensemble (which essentially reflects the performance of the forecast system) can be regarded as a function of the free ensemble interpretation parameters θ. Minimizing the score (and thereby optimizing the performance of the dressed ensemble) with respect to the parameters θ provides a means to choose these parameters, i.e. a means of training, reminiscent of statistical learning. In statistical learning, a functional relationship is picked from a range of functions according to its performance, which is often (but not always) the quadratic error. In ensemble interpretation, a relationship between ensembles and probability density functions is picked from a range of functions according to performance, which in this paper is measured by the Ignorance score. The approach to minimize performance measures (such as the Ignorance score) to determine the parameters of forecast interpretation methods for continuous events was, to our knowledge, first considered by Jewson (2003a,b) and (apparently independently) Gneiting et al. (2005). In so far as minimizing the Ignorance can be considered as maximum likelihood, it is, of course, a very old concept.

A thorough theoretical investigation of the minimum-score training strategy and the properties of the obtained parameters
would be invaluable, but is not subject to this paper. We used an optimization algorithm that solves a sequence of constrained quadratic optimization problems (Gill et al., 1982). Other options are the EM algorithm employed by Raftery et al. (2005). Both algorithms are only guaranteed to find local rather than global minima. We are ignorant as to whether the EM algorithm could be applied to other scores, while preliminary studies indicate that sequential quadratic optimization works equally well with the proper linear score. The Ignorance of kernel dressing can display multiple minima with rather poor performance. Robust solutions with good performance, however, are obtained in practice by a regularization strategy, discussed in Section 5, along with a careful interpretation of the minimization algorithm. The results reported in this paper were obtained using the following methodology for finding the initial conditions. The mean of the dressed ensemble (as described by eq. 5 in case of Gaussian DF interpretation, respectively, eq. 11 in case of kernel dressing) is fitted to the verification in a mean-square error sense. The variance of the dressed ensemble (as described by eq. 6 in case of Gaussian DF interpretation, respectively, eq. 12 in case of kernel dressing) then should roughly correspond to the squared residuals of the fitted mean. Thus, fitting the variance of the dressed ensemble to the squared residuals gives a further condition to find initialization parameters. As it turns out, this allows for finding complete initial conditions for Gaussian DF interpretation and standard kernel dressing. For AKD, this strategy leaves s_2 unspecified, which is set to 1. The structure of the problem as presented in eqs. (20), (21) and (19) and the use of Silverman’s factor guarantee that setting $s_2 = 1$ is a reasonable choice unless the transformed ensemble (eq. 20) is extremely poor.

5. Robustness Issues

Obtaining robust estimates for the parameters of ensemble interpretation methods can be difficult, especially if forecast busts are numerous or when the ensemble is small. This problem is often traced back to the empirical score showing a large variance. Recently, several authors (Gneiting and Raftery, 2007; Selten, 1998) criticized the Ignorance for being particularly prone to large variation. The Ignorance is a quite unforgiving score in that it extremely severely penalizes low-probability assignment to verifications that actually obtain. Indeed, assigning vanishing probability to a verification yields an Ignorance of infinity. Even if the assigned probabilities are never exactly zero, a few ‘bad forecasts’ can render the variance of the empirical Ignorance undesirably large, resulting in parameters obviously useless (this may be a positive attribute in decision support). It should be noted that the Ignorance has a clear interpretation in terms of gambling returns (Good, 1952; Kelly, 1956; Roulston and Smith, 2002). Under a certain betting scenario (‘Kelly Betting’, Kelly, 1956), the Ignorance describes the rate at which the forecaster’s fortune increases with time. The properties of the Ignorance hence can be defended as representing properties of a game. Furthermore, large variations in the empirical score are always to be expected if the forecasts are poor and should adequately be dealt with, especially as the score might not even be a matter of choice. So how can large variations in the empirical score be avoided?

It was suggested by Gneiting and Raftery (2007) that the summands in eq. (24) could be censored, that is, a certain percentage of the data could be rejected as outliers. Another option could be to use a truncated logarithm, which would be reminiscent of ϵ-insensitive loss functions in regression (Vapnik, 1998). This seems inadvisable in cases where such ‘outliers’ have a firm physical interpretation and are expected to become more relevant in the future dynamics, for example in seasonal forecasting. These and other means to combat the influence of outliers on the score and subsequently the parameters are often referred to as regularization. It has to be kept in mind though that the Ignorance (or whichever score is employed) is used both to train the ensemble interpretation parameters and also to evaluate the interpreted forecast. During training, any kind of regularization is permissible and even recommended. For evaluation, however, censoring or truncating of the score would require it to be reintepreted. Important properties and interpretations of the score might not hold for the regularized score. For example, common interpretations of the Ignorance in terms of gambling return rates cease to apply if the sum in eq. (24) is censored, which essentially would be tantamount to cancelling the highest winnings and to default on the worst bankruptcies. In practice, certain scoring procedures (e.g. in sailing, ski jumping or ice skating) actually allow to retrospectively discount the worst results (sometimes requiring the best results to be cancelled too), but this is certainly not the case in ‘games’ as for example casinos, energy markets or air traffic control. Hence, in general, it seems to depend on the particular problem whether a censored (or truncated) score is an appropriate measure of forecast performance.

In situations where a regularization of the problem is necessary during training, but where the problem statement does not allow for any censoring or otherwise altering of the score, it seems inevitable to apply a slightly different (i.e. regularized, respectively, not regularized) scoring methodology during the training (respectively, evaluation) period. In this paper, the logarithm was effectively truncated by replacing all p_n which were equal to zero (up to numerical precision) by the smallest non-zero p_n. For evaluation though, the Ignorance was neither censored nor truncated. Such discrepancies (which are inherent to all regularization approaches) might seem disturbing at first sight. Currently, we lack a full theoretical justification of this approach, but as an ad hoc scheme we found it to give superior results, presumably because of smaller variance in the dressing parameters.

To account for forecast failures during evaluation, the dressed ensemble was blended with an estimate of the climatology of the verification, thereby circumventing the problem of large variances in the empirical score. For a finite ensemble size, this is justifiable even in the case of a perfect ensemble. More specifically, let $p_n(y)$ be the interpreted ensemble and $q(y)$ be an estimate
of the climatology of the verification. We use a mixture of both, like
\[
r_n(y) := \alpha p_n(y) + (1 - \alpha)q(y), \quad 0 \leq \alpha \leq 1,
\] as the forecast distribution. The weight \(\alpha\) is determined so as to minimize the Ignorance (i.e. to optimize the performance) of the combination, and hence must be involved in the optimization. The resulting probability assigned to a verification \(Y\) is never smaller than \((1 - \alpha) q(Y)\). The effect therefore is that a small, yet non-vanishing probability is assigned to the verification, as long as the latter does not fall outside the range of the data record employed to estimate the climatology. Forecast performance is often stated in relation to the performance of climatology as a reference. This means that the (mean of the) difference in performance between \(p_n(y)\) and the climatology \(q(y)\) is reported. Thus, the climatology acts as a reference forecast, itself yielding a score of zero. In case of the Ignorance, this can be written as
\[
S_N[p] - S_N[q] := \frac{1}{N} \sum \log \left[\frac{r_n(Y_n)}{q(Y_n)} \right].
\] (26)
Replacing \(r_n(y)\) from eq. (25), we get for every summand
\[
\frac{r_n(Y_n)}{q(Y_n)} = \frac{\alpha p_n(Y_n) + (1 - \alpha)q(Y_n)}{q(Y_n)} = \frac{\alpha}{q(Y_n)} p_n(Y_n) + (1 - \alpha),
\]
from which we can conclude
\[-\log r_n(Y_n) \leq -\log q(Y_n) - \log(1 - \alpha)\]
Hence, the empirical Ignorance of a forecast combined with climatology relative to climatology is never larger (i.e. worse) than \(-\log(1 - \alpha)\). Blending in climatology thus acts as a hedge against forecast busts. Another way to interpret a blend with climatology is to play cancelling bets. The Ignorance of a forecast relative to climatology describes the rate at which the forecasters fortune increases in a betting scenario where the odds are set according to climatology.\(^6\) Mixing in a proportion \(1 - \alpha\) of climatology hence is equivalent to staking a proportion \(\alpha\) of the fortune according to the forecast and a proportion \(1 - \alpha\) according to the odds given, which guarantees a certain return of at least a proportion \(1 - \alpha\) of the stake. The forecaster thus avoids being infinitely worse off than the house.

Only few forecast busts are sufficient to render a good climatology worth being blended with the forecast proper. As an example, Fig. 1 shows \(-\log r_n(Y_n)\), combined with climatology, versus \(-\log q(Y_n)\), that is the climatology itself. The ensemble forecast was from ECMWF’s medium range 51 member ensemble prediction system. The lead time was 10 d. The weight assigned to the climatology is \(1 - \alpha = 0.051\). It is obvious from the plot that \(-\log r_n(Y_n)\) is never larger than \(-\log q(Y_n) - \log(1 - \alpha)\) at every verification (not just in the mean). Fig. 2 shows the weight assigned to the climatology over lead time. The confidence bars display variations of the weight estimate obtained through cross-validation (see Appendix A).

\(^6\)Or alternatively, relative Ignorance between two forecasts A and B describes the rate at which the fortune of forecaster A exceeds that of forecaster B.
Another interesting interpretation of the weight $1 - \alpha$ assigned to the climatology could be to quantify of belief in or uncertainty of our forecast. The question arises if and how uncertainty of probabilistic forecasts could be quantified more generally, for example if the climatology is unknown or is known to be changing. If the predictive distribution is interpreted as a probability, we are now speaking about assigning an uncertainty to what is already a probability, thus introducing the idea of second-order probabilities, that is quantifying statements like ‘the probability that it rains tomorrow at London Heathrow is evenly distributed between 10 and 20%’. The second-order probabilities lead to odd forecasts (K. Judd, personal communication, 2006), that is, forecasts with a total mass larger than one, the excess representing uncertainty in the forecast (Smith, 2007). Although it is not yet clear how uncertainty in probabilistic forecasts in general or odds, in particular, could be assigned or used, such a framework requires ensemble interpretation methods that focus on information content in the ensembles to hand, while the assumption that the resulting predictive distributions can be interpreted or acted on as if they are (decision relevant) probability distributions has to be dropped.

6. Comparative Studies

This section analyses the performance of standard kernel dressing (SKD), AKD, and Gaussian DF interpretation (GDF). Shortcomings of SKD and GDF, which originally motivated the development of AKD, are illustrated. AKD was compared to BMA too, albeit less comprehensively. All ensemble interpretation methods were blended with climatology, with the exception of Gaussian DF interpretation (GDF). AKD is shown to be superior to all other methods for the problems considered. As far as we are aware, previous implementations of BMA do not blend in climatology, leading to significantly larger variations in performance and often inferior skill.

Results are presented for three different data sets. The first and second data sets consist of forecasts of the 2 m temperature at London Heathrow Airport (WMO station Nr.03772) and Heligoland, German Bight (WMO station Nr.10015), respectively. The forecasts consist of ECMWF’s 51 member ensemble (as for Figs. 1 and 2). The verifications consist of station data, kindly provided by ECMWF as well. Forecasts were available for the years 2001–2005, featuring lead times from 1 to 10 d. Verifications were available as far back as 1981. The years 1981–2000 were used to build a climatology. For any given day, the climatology is calculated only from data falling into the same annual period, defined by a window of ±20 d. Thus, the climatology depends as well on the season. All data verified at noon. The results for the weather data are shown in Figs 3 and 4 and are discussed below.

The third data set was generated using the Lorenz63 system (Lorenz, 1963). The ensemble, comprising 50 members, was generated from observations of the full state of the system, corrupted with 15 dB noise. The sampling interval was 0.05. For data assimilation, a variant of the indistinguishable states importance sampler (Judd and Smith, 2001) was employed. Data assimilation is necessary here, since we have but noisy measurements of the true underlying state of the system. Although ensembles could also be generated by perturbing the true initial condition, this option would, of course, not be available in real applications. Hence, using a data assimilation scheme corresponds much more to realistic circumstances. Forecasts were considered at 10 lead times [0.1, 0.2, . . . , 1]. The same model was used to generate both forecasts and the verifications. Moreover, the verifications formed a single trajectory. In general, the AKD significantly outperforms SKD and GDF, especially for the Lorenz63 system. The AKD method also appears to be the most robust method among the three, in the sense that the performance of AKD showed the least variability. The results for the Lorenz63 system are shown in Fig. 5, and are discussed below.

Fig. 3a shows the performance in terms of Ignorance of AKD relative to climatology for the London Heathrow data set. The x-axis shows the lead time. The confidence bars (in fat line style) mark the 10–90% range obtained from a 10-fold cross-validation. The thin line shows the Ignorance of the out-of-train (OOT) output. The corresponding thin confidence bars show the ±2 σ range (see Appendix A). Cross-validation is known to have a large variance (Hastie et al., 2001), while the variance of the OOT output (see Appendix A) on the other hand tends to be too small. In any case, AKD gives a significantly higher skill than the climatology under both validation methods. In order to compare the performance of AKD, SKD and GDF interpretation, we plot the difference of the Ignorance (eq. A7) directly, rather than leave it to the reader to compare performances across multiple graphs. This allows for confidence bars of the relative performance, as the uncertainty in the relative performance does not follow from the uncertainties of the absolute performances (see Appendix A). The axis scaling has been set so as to allow for easy comparison across different graphs.

Fig. 3b shows the performance of GDF versus AKD. The OOT confidence bars overlap the zero line slightly for lead time 24, 48 and 72 h, but sees AKD significantly ahead of GDF beyond lead time 72 h. The cross-validation assessment indicates essentially the same, the bars being wider though.

Fig. 3c shows the performance of SKD versus AKD for London Heathrow. Up to lead time 120 h, the AKD method outperforms SKD substantially, at least according to OOT calculation. For higher lead times, AKD still appears to be better for a large fraction of cross-validation runs.

7The dB scale measures the ratio between the variances of two signals. A signal-to-noise ratio of d dB indicates that $d = 10 \cdot \log_{10}(\frac{v_n}{v_s})$, where v_s (respectively, v_n) is the variance of the clean signal (respectively, the noise).
Fig. 3. The relative Ignorance of the investigated ensemble interpretation methods and climatology for London Heathrow over lead time. The fat confidence bars are from tenfold cross-validation (10–90% range). The thin confidence bars correspond to the OOT performance ($\pm 2\sigma$ range).

Fig. 3d shows the performance of SKD versus GDF. From lead time 96 h onwards, the two are essentially similar. The potential advantage of SKD when dealing with strongly non-Gaussian ensembles seems to play a little role for temperature at lead times up to 100 h.

The comparison between BMA and AKD (Fig. 3f) remains somewhat inconclusive, although AKD is certainly better than BMA for medium and larger lead times. In terms of OOT performance, AKD is significantly better than BMA. Note that our implementation of BMA includes blending with the climatology. This blending is not a common part of BMA, and some Bayesians might object to it on principle, but it allows for a better comparison between BMA and AKD. Without climatology, BMA shows considerably larger variation in performance (not shown).

The findings for Heligoland (Fig. 4) are very similar to the results obtained for London Heathrow, a notable exception being that AKD wins over GDF by an even wider margin. Furthermore, the superior performance of AKD over BMA occurs for higher lead times when compared to London Heathrow (cf. Fig. 3f with Fig. 4f).

It is interesting to look at the non-Gaussianity of the ensemble for these two data sets, especially in connection to the performance of AKD versus GDF (Figs. 3b and 4b), as we expect AKD to outperform GDF if the ensembles deviate from Gaussianity. As a measure of non-Gaussianity, we employ the kurtosis of the ensemble, that is the centred moment of fourth order, $k(x) = \frac{1}{d} \sum (x_i - m(x))^4$, where $m(x)$ is, as before, the ensemble mean. For Gaussian distributions, the fourth-centred moment is expected to be three times the variance, hence we expect for Gaussian ensembles $\kappa(x) := \frac{k(x)}{3\sigma(x)} = 1 \approx 0$.

The distribution of this statistic κ for Gaussian ensembles can be simulated through bootstrapping and subsequently compared with the distribution of κ for the actual ensembles. In Figs. 6 and 7, the 10–90% range of the actual values of κ is indicated by a black bar, for London Heathrow and Heligoland, respectively. The y-axis is calibrated in terms of quantiles of κ for
Fig. 4. As in Fig. 3, but for Heligoland.

Gaussian ensembles. If the actual ensembles were Gaussian, all bars should extend from 0.1 to 0.9. It emerges that at both locations, the ensembles tend to be particularly non-Gaussian at lead times around 96 h. Interestingly, for larger lead times at London Heathrow, the κ-statistic indicates again a more Gaussian ensemble. For Heligoland, the ensembles are also particularly non-Gaussian at lead times around 96 h, but contrary to London Heathrow, the ensembles stay fairly non-Gaussian out to lead time 240 h. This provides a possible explanation for the better performance of AKD in relation to GDF at Heligoland. It is worth noting that the better performance of AKD versus GDF further indicates that the non-Gaussian ensembles carry information beyond the second moment. The AKD interpretation outperforms GDF not only because the ensembles are non-Gaussian, but also because this non-Gaussianity actually carries information.

As to the reasons why AKD outperforms the other discussed methods, further investigation is necessary. There is some evidence though that the mechanisms discussed in Section 3 are in fact responsible. We investigated the parameters for both BMA and AKD for London Heathrow at lead time 120 h. Note that AKD is particularly strong here, and that the ensembles are particularly non-Gaussian. The parameters were substituted into eqs. (17) and (18). For AKD, these relations read

$$\mu = 0.0 + 0.99 m(x),$$ \hspace{1cm} (27)
$$\nu = 1.93 + 0.53 v(x).$$ \hspace{1cm} (28)

For BMA, these relations read

$$\mu = 0.003 + 1.0 m(x),$$ \hspace{1cm} (29)
$$\nu = 0.17 + 1.0 v(x).$$ \hspace{1cm} (30)

The cross-validation approach (see Appendix A) yields an uncertainty of less than 10^{-3} for all these coefficients. Since eqs. (27) and (29) agree to a high degree, AKD and BMA always have very similar means. The eqs. (28) and (30) though differ.

8The scale of the y-axis is not linear in p but in $\log(\frac{p}{1-p})$. For small (respectively, large p), this renders the plot effectively logarithmic in p (respectively, $1-p$).
As was mentioned already in Section 3, for BMA the slope of the variance relation (eq. 30) is always the square of the slope of the mean relation (eq. 29), whence it is impossible for BMA to have mean and variance relations like eqs. (27) and (28). It appears though that the variance relation of AKD (eq. 28) gives the better performance. It is interesting to note that the two variance relations intersect at \(v(x) = 3.74 \), as this is almost exactly the temporal average of \(v(x) \), which is 3.76. This means that on average over time, BMA and AKD feature the same variance (3.93), which is in fact the ensemble variance, slightly inflated. For individual ensembles though, their variances generally differ. In particular, the variations of the variance (i.e. the variance of \(\nu \)) is larger for BMA than for AKD. The lead times 48 and 216 h (for Heathrow and Heligoland) were investigated along the same lines, with similar findings. Finally, we would like to mention that for AKD, BMA and SKD, the weight assigned to climatology behaves roughly as in Fig. 2.

The experiments carried out using the Lorenz63 data confirm the general picture already obtained from the weather data experiments, thereby confirming that any positive results are not only due to limited counting statistics. AKD is the best performing and most robust method. The performance of AKD versus climatology is shown in Fig. 5a. AKD and SKD perform roughly equal (Fig. 5b). We suspect that this is due to the high quality of the ensemble. If the ensembles were either overdispersive or underdispersive, we would expect AKD to perform better than SKD. Talagrand diagrams (not shown), however, indicate that the ensembles are very reliable (i.e. neither overdispersive nor underdispersive), which explains the similar performance of both

Fig. 5. The relative Ignorance of the investigated ensemble interpretation methods for the Lorenz63 data set over lead time. Confidence bars are as in Fig. 3.

Fig. 6. The 10–90% range of the \(\kappa \)-statistic for London Heathrow. The \(y \)-axis is calibrated in terms of quantiles of the \(\kappa \)-statistic for Gaussian ensembles and plot on \(\log(\frac{p}{1-p}) \) scale.

Fig. 7. The 10–90% range of the \(\kappa \)-statistic for Heligoland. The \(y \)-axis is calibrated in terms of quantiles of the \(\kappa \)-statistic for Gaussian ensembles and plot on \(\log(\frac{p}{1-p}) \) scale.
The ensemble interpretation is a critical component contributing to the value of an ensemble prediction system. By aiming merely to extract information from the model simulations and other available distributions (e.g. climatology), AKD has been shown to improve this critical component, and may contribute to enhancing the value of ensemble-based prediction, particularly in applications like weather forecasting at all lead times.

8. Acknowledgments

We are grateful to Renate Hagedorn and ECMWF for providing ensemble forecast as well as station data for London Heathrow and Heligoland. The forecasts and verifications for the Lorenz63 system were provided by Hailiang Du. We gratefully acknowledge the fruitful discussions with Jeremy Penzer, Antje Weisheimer and Liam Clarke. Questions and suggestions by two anonymous referees led to further improvements of the manuscript.

Performance evaluation of forecast systems aims to provide a sound estimate of the future or out-of-sample performance, or more specifically on data the forecast system will encounter while in operation. Estimating the performance on data which were already used to build or select the forecast system or any parts of it, including the ensemble interpretation methods, is likely to give overoptimistic results. Ideally, the ensemble interpretation methods are trained on one part of the available data, while the other part is left aside as test data. To get reliable estimates of the out-of-sample performance, the test data set has to be sufficiently large. But typically, as the total amount of data available is already limited, we cannot afford to sacrifice large proportions of the data for out-of-sample performance assessment, as a small training set is expected to provide inferior parameter values. We apparently face the problem of having either unrealistic parameters or unreliable estimates of performance.

A way around this apparent *circulus vitiosus* is *cross-validation* (see e.g. Hastie et al., 2001). The price to be paid though is having to train the ensemble interpretation method a number of times rather than only once. More specifically, cross-validation works as follows. The training set \(T = \{ (x(n), Y_n), n = 1 \ldots N \} \) is partitioned into \(J \) partitions \(T_j \) of equal length \(N/J \). Let \(\theta^{(j)} \) be the parameter vector obtained by training the ensemble interpretation method on \(T \setminus T_j \), that is the training set without partition \(j \). The score \(S_j \) for this particular \(\theta^{(j)} \) is evaluated only on \(T_j \) (i.e. the data that had been left out for finding \(\theta^{(j)} \)) and is given by

\[
S_j := \frac{J}{N} \sum_{n \in T_j} - \log \{ p[Y_n; x(n), \theta^{(j)}] \}. \tag{A1}
\]
The mean of all S_j is called the cross-validation estimate of the score

$$S_{CV} := \frac{1}{J} \sum S_j.$$

(A2)

The standard error of S_{CV} can be estimated thus

$$\Delta S_{CV} := \sqrt{\frac{1}{J(J-1)} \sum S_j^2 - S_{CV}^2}.$$

(A3)

In similar fashion, quantiles of the S_j can be computed to give confidence intervals for the score. In the figures of Section 6, we plotted the median score along with the 10–90% range as confidence intervals for the score. In Hastie et al. (2001), using the standard error we plotted the median score along with the 10–90% range as confidence intervals for the score. In the figures of Section 6, underestimation of the variations.

An another way to estimate the likely variations of the score, referred to as the OOT estimate, works as follows. Using the parameters $\theta^{(j)}$ obtained through cross-validation, we can compute the OOT output by

$$\pi_a := p(Y_a, x(n), \theta^{(j/a)}),$$

(A4)

where j_a denotes the index of the partition containing $[Y_a, x(n)]$. Recall that the sample $[Y_a, x(n)]$ was not used during the training of the particular parameter $\theta^{(j/a)}$. Using the OOT output, the expected score:

$$S_{OOT} := \frac{1}{N} \sum \log(\pi_a),$$

(A5)

and its standard error

$$\Delta S_{OOT} := \sqrt{\frac{1}{N(N-1)} \sum \log(\pi_a)^2 - S_{OOT}^2}.$$

(A6)

can be computed. An easy calculation [comparing eqs. (A4, A5) with (A1, A2)] reveals that S_{OOT} is actually equal to S_{CV}. The standard errors, however, generally differ. For the OOT method, the usual $\pm 2 \cdot \Delta S_{OOT}$ confidence intervals were employed. It does not make sense to use quantiles of $-\log(\pi_a)$ as confidence intervals for S_{OOT}. It is hard to say which of the two methods is to be preferred, whence both were used for performance assessment. The CV method explicitly takes into account model variations, but as the individual CV partitions are shorter than the training set, the model variations are likely to be overestimated. The OOT technique uses the entire data set to estimate the variations, but both model variations as well as performance variations are compounded. Furthermore, the individual outputs π_a are assumed to be independent, an idealization that leads to underestimation of the variations.

It is often necessary to consider the improvement of the Ignorance obtained by $p_0(y)$ over $q(y)$. This improvement is naturally measured by the increase in Ignorance (also often referred to as the relative Ignorance of $p_0(y)$ with respect to $q(y)$):

$$S_p - S_q = \frac{1}{N} \sum_{n=1}^{N} \log[p_0(Y_a)] - \log[q(Y_a)].$$

(A7)

This quantity, as the estimate of the Ignorance proper, carries an uncertainty. It is important to realize that there is no simple relationship between the uncertainty in $S_p - S_q$ and the individual uncertainties in S_p and S_q, since both are highly dependent. In other words, the standard error of $S_p - S_q$ is not in any simple way related to the individual standard errors of S_p and S_q. To estimate the standard error of relative ignorance’s through either cross-validation or OOT technique, the eq. (A3) (respectively, A6) has to be applied to the differences in the performance S_j between the forecasts on each partition [respectively, the differences of $\log(\pi_a)$].

All performance plots (Figs. 3–5) show relative Ignorance (either with respect to another forecast or with respect to climatology). The cross-validation estimates are plotted in fat-line style, while the OOT estimates are in thin-line style. As noted above, cross-validation and OOT differ only in their estimates of the standard error.

10. Appendix B: On Ensemble Transforms

In this paper, we considered the interpretation of ensembles as the problem of finding a map from a series of ensembles on to a series of distribution functions for a corresponding series of verifications. The method of AKD provides a special class of such mappings by combining a simple kernel estimator (eq. 19) which with what we termed an affine ensemble transform (eq. 20). This idea could be generalized by using different ensemble transforms, probably involving non-linear elements. A particular linear ensemble transform was used in this paper, and there is the possibility that the concept is of wider applicability in post-processing ensemble forecasts. To this end, ensemble transforms need to be properly understood and classified first. At this point, we are not even sure if the ensemble transform used in this paper is the most general linear ensemble transform. In this appendix, some necessary conditions will be formulated that we deem general ensemble transforms should obey and are hopefully sufficient for a conclusive analysis of the aforementioned question.

The key property of an ensemble, which distinguishes it from a vector, is that it is still considered the same ensemble if some members are interchanged either across parts of or the entire ensemble. For example, although the 50 perturbed members of the ECMWF ensemble are distinguishable by the initial perturbations used to compute them, they can be considered indistinguishable for the purpose of many applications. For the numerical studies in Section 6, even the unperturbed (‘control’) forecast was considered indistinguishable from the perturbed ensemble members. Such an ensemble of mutually interchangeable members will be called a pure ensemble. Ensembles consisting of a collection of pure ensembles (say, if we combine pure ensembles produced by different models) might be called compound ensembles. All ensemble interpretation methods studied in this paper tread the ensembles as pure, as they are invariant to any permutation of the ensemble members.
An ensemble transform f is defined simply as a mapping between ensembles (not necessarily having the same number of members). The key property of a (pure) ensemble, namely that the ordering of the ensemble members is irrelevant, imposes certain restrictions on f, which we are going to formulate. Let (as before) $x = [x_1, \ldots, x_d]$ be the original ensemble (consisting of d members) and

$$z = f(x)$$

be the transformed ensemble (of d' members). If we now permute the elements in x, then z must remain the same ensemble, which means, as we have seen, that at most some permutation of the elements of z should take place. In other words, if π denotes a permutation of d elements and πz denotes the permuted original ensemble, there must be a permutation κ of the members of the transformed ensemble z so that

$$\kappa z = f(\pi x) \quad (B1)$$

holds.

The permutation κ so obtained obviously depends on π, or in other words, the relation (B1) defines a mapping $\kappa(\pi)$ between permutations. If i is the identity, that is the permutation of d elements that actually keeps all elements the same, then likewise $\kappa(i)$ is the identity permutation (of d' elements). This relation can (with a slight abuse of notation) be written as

$$\kappa(i) = i. \quad (B2)$$

Furthermore, if π_1, π_2 are two permutations, a third permutation $\pi_1 \circ \pi_2$ arises through composition of π_1, π_2. It follows immediately from eq. (B1) that

$$\kappa(\pi_1 \circ \pi_2) = \kappa(\pi_1) \circ \kappa(\pi_2). \quad (B3)$$

Properties (B2) and (B3) state that any ensemble transform gives rise to a representation κ of the group of permutations of d symbols in the group of permutations of d' symbols.

The transformed ensemble z in eq. (B1) is not necessarily a pure ensemble though, as it might be possible to split the members of z into two subensembles, $z = [z_1, z_2]$, so that for any permutation π, the corresponding permutation $\kappa(\pi)$ permutes, in fact, only the members of z_1 and z_2 among each other, but does not interchange members of z_1 with members of z_2. If this is the case, we have created a compound ensemble consisting of (at least) two pure ensembles. In order to exclude this behaviour, we have to require that for any two indices i, j in the set $[1 \ldots d']$, there is at least one permutation π so that $\kappa(\pi)$ permutes i into j. Groups of permutations with this property are called transitive. Hence, the conclusion of this appendix can be summarized, thus:

Via eq. (B1), an ensemble transform induces a transitive representation of the group of permutations of d symbols in the group of permutations of d' symbols.

Transitive representations of the permutation groups have been widely studied and classified. Hence, by means of group theory (Weyl, 1946), it should be possible to address questions like whether the affine ensemble transform as presented in eq. (20) is the most general class of ensemble transforms which can be obtained by linear operations.

References

