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Overview of Report 

This	project	and	report	covers	the	development	of	a	customized	rainfall	and	
riverflow	observing	and	forecasting	framework	for	the	Bagmati-Adhwara	and	Kosi	
Basins	in	Bihar	State.	The	overall	objective	was	to	equip	the	Flood	Management	
Improvement	Support	Center	(FMISC)	under	the	Water	Resources	Department,	Govt.	
of	Bihar	with	a	robust	24X7	feed	of	customized	weather	ensembles	of	satellite	based	
rainfall	estimates	and	short-to-medium	range	rainfall	forecasts,	along	with	and	
modules	that	allow	FMISC	to	utilize	these	data	directly	into	operational	FMISC	flood	
forecast	models	developed	for	the	Bagmati-Adhwara	(B-A)	and	Kosi	basins.	In	
addition,	NCAR	has	provided	“experimental”	seasonal	mult-model	rainfall	products	
also	for	Bihar.	Web-based	dashboards	have	been	developed	so	that	the	ensembles	
are	viewable	and	downloadable	for	hydrologic	model	ingest.	In	addition,	operational	
riverflow	forecasts	going	out	1-	to	16-day	lead-times	in	advance	have	also	been	
produced	corresponding	to	river	height	gauging	locations	currently	in	operation	in	
these	basins.	These	riverflow	forecasts	utilize	the	same	rainfall	data	sets	as	are	
being	provided	directly	to	the	FMISC,	in	addition	to	employing	a	set	of	customized	
hydrologic	modeling	and	quality	control	tools	to	generate	optimized	ensemble	
riverflow	forecasts	for	these	locations.	In	addition,	much	of	this	system	is	running	in	
parallel	on	the	Amazon	Cloud	Services	(AWS),	and	this	AWS	account	is	designed	for	
shareable	access	between	NCAR	and	the	FMISC	such	that	FMISC	staff	can	directly	
access	and	modify	all	the	technologies	and	data	sets	created	under	this	consultancy.	

In	the	context	of	this	objective,	the	structure	of	this	report	is	as	follows:	we	first	
present	the	rainfall	observing	and	forecasting	data	sets	covering	the	key	outputs	of	
this	project	that	are	useful	for	the	implementation	of	effective	flood	forecasting	
warning	systems	over	the	Bagmati-Adhwara,	and	Kosi	Basins.	Within	the	main	body	
of	this	report,	we	first	provide	a	forecasting	system	overview	to	build	context	for	
materials	presented	in	the	rest	of	the	report.	This	is	followed	by	a	review	and	
evaluation	of	our	data	sources	useful	for	flood	forecasting.	These	products	include	
satellite-derived	rainfall	estimates,	ensemble	weather	forecasts	from	a	range	of	
global	forecasting	centers,	in	situ	river	stage	measurements	and	their	quality	
control,	and	satellite	emissivity	signals	correlated	to	changes	in	river	width	(or	
simply,	“river	width	measurements”).	We	also	provide	visualizations	and	links	to	
access	many	of	these	data	in	real-time,	with	many	of	these	quality	controlled	for	
user	ease.	We	then	discuss	forecasting	methodologies	we’ve	utilized	and	introduced	
in	this	project,	along	with	a	discussion	on	the	validation	protocol	we	utilize	for	
establishing	operational	reliability	and	limiting	conditions	on	the	forecast	utility	and	
skill.	This	is	followed	by	a	discussion	on	the	skill	of	the	forecasting	products	
themselves,	both	catchment-integrated	precipitation	and	river	discharge	forecasts.	
We	then	conclude	the	main	body	of	this	report	by	presenting	the	visualization	and	
information	sharing	tools	we’ve	developed	to	communicate	our	operational	
forecasts.	In	the	appendices,	we	cover	many	of	these	topics	in	more	technical	detail.		
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Introduction 

Background 

The	Flood	Management	Information	System	(FMIS)	Centre	in	Water	Resources	
Department	(WRD)	of	Government	of	Bihar	(GoB)	aims	to	generate	and	disseminate	
timely	and	customized	information	to	move	from	disaster	response	to	improved	
disaster	preparedness	and	to	effectively	support	flood	control	and	management	in	
the	flood-prone	areas	of	the	State.	Conceptual	flood	models	are	being	developed	in	
Bagmati-Adhwara	(B-A)	basin	and	Kosi	basin	to	enhance	the	traditional	system	of	
stage-level	warnings	based	on	gauge-to-gauge	correlation	in	order	to	transform	it	to	
flood	forecasting	services	for	effective	flood	management	strategy	and	planning.	
Part	of	the	requirements	for	these	conceptual	flood	models	to	provide	future	
forecasts	of	river	flow	are	inputs	of	both	point	and	basin-wide	rainfall	estimates	and	
forecasts.	Satellite-based	ensemble	rainfall	estimates	from	multiple	satellite	
missions	and	sensors	may	provide	a	credible	alternative	in	regions	of	poor	rainfall	
network	and	to	spatially	better	represent	the	rainfall	patterns	in	the	basin.	
Improved	rainfall	forecast	capacity	can	also	be	provided	with	short-to-medium	
range	ensemble	weather	forecasts	using	deterministic	and	probabilistic	approach	
and	downscaled	and	re-gridded	for	the	basins.	The	goal	is	to	build	capability	and	
capacity	at	the	FMISC	center	in	Patna	so	that	these	rainfall	estimates	and	short	(1-3	
days)	and	medium	(4-16	days)	range	weather	ensembles	forecast	products	can	be	
integrated	in	the	forecast	models	in	B-A	and	Kosi	basins	in	Bihar	State.	

Objective 

The	objective	is	to	equip	the	Flood	Management	Improvement	Support	Center	
(FMISC)	under	the	Water	Resources	Department,	Govt.	of	Bihar	with	a	robust	24X7	
feed	of	customized	weather	ensembles	of	satellite	based	rainfall	estimates	and	
short-to-medium	range	rainfall	forecasts,	along	with	tools	and	modules	that	will	
allow	FMISC	to	utilize	these	data	directly	into	operational	FMISC	flood	forecast	
models	developed	for	the	Bagmati-Adhwara	(B-A)	and	Kosi	basins.	Web-based	
dashboards	are	available	to	FMISC	so	that	the	ensembles	will	also	be	viewable	and	
downloadable	for	hydrologic	model	ingest.	Training	is	also	available	to	ensure	
FMISC	has	the	understanding	required	to	not	only	run	these	stand-alone	modules,	
but	also	to	maintain	and	modify	them	as	needed.	

To	move	beyond	strictly	gauge-to-gauge	correlation	river	height	forecasting	in	the	
B-A	and	Kosi	basins	requires	the	utilization	of	rainfall	observations;	and	at	longer	
lead-times,	rainfall	forecasts.	In	addition,	consideration	of	integrating	and	blending	
data	from	multiple	data	sources	increases	accuracy	(in	both	observations	and	
forecasts),	while	providing	needed	back-up	redundancy	required	of	operational	
systems.	Additionally,	provision	of	forecasting	products	in	the	form	of	“ensembles”	
provides	a	range	of	possibilities	the	rainfall	can	have.	This	consultancy	provides	the	
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FMISC	and	other	partners	multi-model,	optimized	rainfall	products	for	their	
hydrologic	models	using	state	of	the	art	technologies.	We	note	that	recent	research	
into	multi-modeling	rainfall	forecasts,	in	particular,	has	shown	that	additional	1-	to	
3-days	in	forecasting	skill	can	be	gained	over	a	single	product	alone	

GIS Delineation 
	
The	FMISC	has	provided	catchment	shape	files	for	this	consultancy,	and	we	have	
also	delineated	subbasins	at	different	spatial	scales	in	our	domain.	In	addition,	the	
catchment	area	above	each	of	each	river	height	gage	in	our	doman	(a	necessary	step	
for	the	application	of	the	discharge	forecasting	models	to	be	independently	
employed	at	each	location)	have	been	delineated	using	the	SRTM	HydroSHEDS	data	
set	(90m	horizontal	resolution).	
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Rainfall Data Components 
	
	
In	this	section,	we	discuss	the	rainfall	products	we	use	in	this	consultancy,	starting	
with	our	best	estimates	of	observed	rainfall,	followed	by	“medium-range”	ensemble	
rainfall	forecasting,	and	multi-model,	multi-center	seasonal	ensemble	rainfall	
forecasts.	
	

Precipitation Estimates 
	
As	our	best	estimate	of	“truth”	over	our	domain,	we	use	a	merged	blending	of	
satellite	rainfall	estimates	from	three	different	global	centers	as	shown	below.	
	

	
Figure	1:	The	satellite	rainfall	products	we	used	for	this	project.	

	
The	NASA	TRMM	and	JAXA	GSMaP	satellite	precipitation	product	(merged	to	a	
common	0.1X0.1	degree	resolution,	accumulations	every	3hrs)	satellite	products	are	
also	blended	with	available	(daily,	sparse)	rain	gauge	estimates	over	the	same	
domain	for	our	riverflow	forecasts.	The	rain	gauge	data	are	daily	0.5X0.5	gridded	
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rain	gauge	analyses	that	used	rain	gauges	reporting	to	the	WMO	GTS	network	(Xie	et	
al.	1996).	

 

Thorpex Tigge Multi-model Forecasts 
	
Ensemble	forecasting	has	emerged	as	the	practical	way	of	estimating	the	forecast	
uncertainty	and	making	probabilistic	forecasts.	Based	on	multiple	perturbed	initial	
conditions,	ensemble	approach	samples	the	errors	in	the	initial	conditions	to	
estimate	the	forecast	uncertainty	(spread	in	member	forecasts).	The	skill	of	the	
ensemble	forecast	shows	marked	improvement	over	the	deterministic	forecast	
when	comparing	the	ensemble	mean	to	deterministic	forecast	after	a	short	lead	
time.	
	
One	source	of	our	multi-center	ensemble	rainfall	forecasting	data	comes	from	the	
THORPEX-TIGGE	data	set.	THORPEX	stands	for	The	Observing	system	Research	and	
Predictability	Experiment,	while	TIGGE	stands	for	the	THORPEX	Interactive	Grand	
Global	Ensemble.	THORPEX	is	an	international	research	programme	established	in	
2003	by	the	World	Meteorological	Organization	to	accelerate	improvements	in	the	
utility	and	accuracy	of	weather	forecasts	up	to	two	weeks	ahead.	It	is	part	of	the	
World	Weather	Research	Programme	and	is	a	key	component	of	the	WMO	Natural	
Disaster	Reduction	and	Mitigation	Programme.	TIGGE	is	a	key	component	of	
THORPEX,	and	is	a	World	Weather	Research	Programme	designed	to	accelerate	the	
improvements	in	the	accuracy	of	1-day	to	2	week	high-impact	weather	forecasts	for	
the	benefit	of	humanity	by	providing	access	to	global	ensemble	weather	forecasts	
from	eight	NWP	centers	around	the	globe	(see	figure	below).	
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Figure	2:	Green	dots	show	the	locations	of	the	12	NWP	centers	that	provide	data	to	the	(nominally	3-day	
delayed)	near-real-time	THORPEX-TIGGE	data	archive.	This	project	will	primarily	utilize	forecasts	from	
the	following	centers:	CMA,	CMC,	ECMWF,	UKMO,	NCEP,	MeteoFrance,	JMA,	and	CPTEC	
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Figure	3:	In	our	displays,	we	provide	forecasts	from	the	top	four	centers	in	this	list.	But	in	our	multi-
model	rainfall	and	riverflow	forecasts,	we	utilize	data	from	the	top	eight	centers.			

	
We	will	utilize	data	from	eight	of	the	contributing	NWP	data	centers	for	this	project,	
which	provide	forecasts	every	day	and	for	every	6hrs	ahead	out	to	16	days	in-
advance,	but	are	delayed	two	days	before	their	release.	All	told,	these	data	
constitute	over	300	ensemble	members	being	generated	each	day.	In	our	displays,	
we	provide	forecasts	from	the	top	four	centers	in	the	list	of	the	figure	above.	But	in	
our	multi-model	rainfall	and	riverflow	forecasts,	we	utilize	data	from	the	top	eight	
centers.		
	

US NCEP and Canada CMC Forecasts 
	
To increase redundancy and speed up forecast data availability, we also retrieve directly 
multi-model ensemble rainfall data from the National Center for Environmental 
Prediction (NCEP), which also included data from the Canadian Meteorological Center 
(CMC) of the Environment Canada (EC). We retrieve data from the Global Ensemble 
Forecasting System (GEFS)  and CMC forecasts at roughly T190L28 resolution (70 km 
and 28 levels) with 20 members implemented globally for forecasting up to 16 days, and 
are available in near-real-time.	
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NMME Seasonal forecasts 
	
As	a	“pilot”	study,	we	also	provide	multi-model,	multi-center	ensemble	seasonal	
rainfall	forecast	data	the	North	American	Multi-model	Ensemble	(NMME)	as	shown	
below.	

	
Figure	4:	Multi-model,	multi-center	ensemble	seasonal	rainfall	forecast	data	available	for	Bihar.	
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Rainfall Forecasting Methods 

 
In	this	section,	we	discuss	the	methods	we	employ	to	generate	calibrated	and	
optimally	merged,	multi-center	ensemble	rainfall	forecasts	catchment-integrated	
over	our	region	for	FMISC	use.	We	start	with	a	discussion	on	our	bias	correction	
algorithm,	which	removes	biases	across	the	whole	probability	distribution	function	
(PDF),	followed	by	the	calibration	method	we	employ,	that	allows	for	calibrating	
individual	ensemble	forecasts,	along	with	the	merging	of	multi-center,	ensemble	
forecast,	to	generate	a	final	set	of	optimal	ensembles	for	hydrologic	applications.	
The	appendices	discuss	aspects	of	these	techniques	in	more	detail.	
	

Bias Correction -- Quantile-to-Quantile Mapping 
	
In	this	subsection,	we	discuss	a	somewhat	similar	approach	to	model	fitting	as	
described	by	QR	below,	called	“quantile-to-quantile	mapping	(q-to-q),	but	with	a	
different	twist	such	that	this	approach	is	less	stringent	on	model	fitting	when	the	
regressand	(observed	values)	may	be	error-prone	themselves.	More	technical	
details	of	this	approach	are	discussed	in	Error!	Reference	source	not	found.	
below.	
	
Generally,	all	practical	rainfall	or	hydrologic	models	require	some	form	of	
calibration	arising	from	reasons	such	as	simplified	parameterization	of	rainfall	
processes	and	incomplete	knowledge	of	watershed	properties	and	the	necessary	
parameterization	of	transport	at	unresolved	scales.	In	the	case	of	riverflow	forecasts	
(discussed	further	below),	through	the	hydrologic	model	parameter	calibration	
process,	some	of	the	additional	errors	in	the	watershed	inputs	(rainfall,	in	
particular)	can	also	be	implicitly	reduced	(e.g.	runoff	errors	arising	from	an	over-
bias	in	rainfall	forcing	can	be	implicitly	minimized	by	increasing	the	
parameterization	of	evapotranspiration).	However,	such	bias	reduction	through	
calibration	does	not	occur	if	there	are	relative	errors	between	more	than	one	input	
of	the	same	physical	quantity.	In	particular,	using	both	weather	forecasts	and	
observationally-based	estimates	of	precipitation	concurrently	to	generate	unbiased	
discharge	forecasts,	requires	that	these	two	data	sources	maintain	their	statistical	
similarity	such	that	there	are	no	relative	biases	between	their	statistical	moments	
(mean,	variance,	and	skewness,	in	particular).	Note	that	quantile	regression	
(discussed	below)	could	also	provide	the	required	bias	reduction	on	a	forecast-day-
by-forecast-day	bases.	However,	because	we	feel	that	the	merged	satellite	
precipitation	product	(i.e.	“observations”)	inherently	have	their	own	error,	we	
hypothesize	it	is	more	optimal	to	only	utilize	a	more	“global”	statistical	adjustment	
of	the	TIGGE	precipitation	forecasts	to	require	them	to	only	be	drawn	from	the	same	
probability	distribution	function	as	the	observations.	Quantile-to-quantile	mapping	
is	designed	to	exactly	do	this.	
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Calibration and Multi-modeling -- Quantile Regression 
	
In	this	subsection,	we	briefly	discuss	a	statistical	forecasting	and	correction	
approach	we	introduced	into	this	project	that	we	rely	on	heavily	in	this	project,	
called	“quantile	regression”	(QR).	In	particular,	we	use	this	approach	in	both	our	
ensemble	rainfall	calibration	for	ensembles	from	individual	centers	and	multiple	
centers;	and	similarly,	we	apply	QR	in	a	similar	way	for	our	riverflow	foecasts	
(discussed	further	below).	We	defer	more	technical	details	of	this	approach	to			
	below.	Quantile	regression	has	been	little	used	in	the	atmospheric	and	hydrologic	
communities.	We	introduced	this	approach	for	this	project,	relaying	on	it	heavily	to	
generate	ensemble	forecasts	and	forecast	error	corrections.	Similar	to	simple	linear	
regression	which	minimizes	the	square	error	of	a	model	to-be-fit,	QR	instead	
minimizes	the	absolute	error,	but	done	for	each	“quantile”	of	the	distribution	one	is	
interested	in.	The	result	is	that	multiple	models	are	generated,	one	for	each	quantile,	
and	each	provides	a	reliable	probability	of	what	values	the	rainfall	(or	river	flow)	
will	exceed	during	the	forecasting	period	(such	that	“flat	histograms”	of	the	
forecasts	are	produced	–	described	further	in	an	appendix	below).	As	we	apply	it	for	
our	forecasting	application,	we	ensure	that	the	resultant	ensemble	rainfall	forecasts	
(or	discharge	forecasts)	are	no	worse	than	the	climatological	average	flow	after	the	
model	fitting	process.	
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Rainfall Forecast Products and Evaluation 
	
In	this	section,	we	provide	an	evaluation	of	our	rainfall	products	we	are	generating	
for	this	project,	starting	with	a	look	at	the	biases	of	the	forecasts,	the	inherent	skill	
of	each	forecasting	center’s	ensemble	forecasts.	We	then	follow	up	with	this	by	
showing	the	benefits	of	combining	all	weather	centers’	ensemble	forecasts	together	
to	produce	mutli-model	ensemble	rainfall	forecasts	for	hydrologic	applications.	We	
conclude	by	providing	a	web-based	display	to	compare	past	historical	rainfall	
events	both	observed	and	forecasted.	

 

Bias and Anomaly Correlation Comparisons 
	
In	this	subsection,	we	provide	an	evaluation	of	our	rainfall	products	we	are	
generating	for	this	project,	starting	with	a	look	at	the	biases	of	the	forecasts,	and	
then	the	inherent	skill	of	each	forecasting	center’s	ensemble	forecasts.	
	
Below	in	the	figure	we	see	comparisons	of	the	rainfall	amounts	for	August	average	
rainfall	from	2011	to	2015	for	four	of	our	weather	forecast	centers	0	to	4	day	lead-
time	forecasts	over	the	Bagmati,	Kosi,	and	Adhwara	basins,	noting	the	similarities,	
but	also	distinctive	differences	in	both	the	amounts	and	locations.	



                       
 

  Bihar Flood Management Improvement Support Centre                          25 

Implement and Operationalize a Customized Meteorological Framework 

		
Figure	5:	omparisons	of	the	rainfall	amounts	(mm/day)	for	August	average	rainfall	from	2011	to	2015	
for	four	of	our	weather	forecast	centers	0	to	4	day	lead-time	forecasts	over	the	Bagmati,	Kosi,	and	
Adhwara	basins,	noting	the	similarities,	but	also	distinctive	differences	in	both	the	amounts	and	
locations.	

The	similarities	and	differences	in	the	fields	become	more	pronounced	when,	
looking	at	their	direct	differences	(biases:	subtracting	the	forecasts	from	the	
observations),	as	seen	in	the	figure	below.	If	one	were	to	choose	a	forecast	model	
based	only	on	these	biases,	one	might	chooseLooking	at	these	differences	in	the	
biases,	one	might	choose	for	the	Bagmati	(first	to	last)	the	ECMWF,	Canada,	UKMet,	
and	then	the	NCEP	models.	For	the	Adhwara,	one	would	choose	Canada,	ECMWF,	
UKMet,	and	then	the	NCEP.	For	the	Kosi:	Canada,	UKMet,	ECMWF,	then	NCEP.	Note	
the	change	in	ranking	over	such	relatively	short	distances!	
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Figure	6:	biases	(subtracting	the	forecasts	from	the	observations,	in	mm/day)	of	the	values	seen	in	the	
figure	above.	

However,	now	let’s	examine	the	skill	in	the	forecasts	themselves,	here	defined	as	
their	anomaly	correlation	(the	correlation	of	both	the	observations	and	of	the	
forecasts,	both	differenced	from	“climatology”,	as	seen	below	in	the	figure.	Now,	the	
ranking	of	the	models	one	might	choose	for	the	Bagmati	would	be:	ECMWF,	NCEP-
UKMet	(both	equal),	and	then	Canada.	For	the	Adhwara,	one	would	choose:	ECMWF,	
NCEP,	then	Canada-UKMet	(both	equal).	For	the	Kosi:	ECMWF-NCEP-UKMet	(all	
equal),	the	Canada.	Comparing	these	rankings	from	those	of	the	biases,	we	see	very	
different	result.	If	one	were	to	choose	the	value	of	the	forecasts	based	solely	on	the	
biases	as	an	indicator	of	the	forecast	(correlation)	skill,	one	would	be	misled!	What	
this	points	out	is	the	importance	of	being	clear	on	metric	one	most	cares	about	for	
your	application	before	choosing	a	“best”	model.			
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Figure	7:	Anomaly	correlation	skill	(the	correlation	of	both	the	observations	and	of	the	forecasts,	both	
differenced	from	“climatology”)	in	the	four	centers’	forecasts.	

What	is	interesting	to	in	the	figure	above,	just	as	with	the	biases,	there	is	a	
significant	variation	in	forecast	skill	with	location,	both	across	different	models,	and	
within	the	same	model.	However,	averaging	the	correlation	skill	across	the	region’s	
catchments	(seen	in	the	figure	below),	we	see	that	for	both	the	24hr-average	and	5-
day	average	forecasts,	ECMWF	is	superior	overall,	followed	by	generally	equal	
rankings	for	the	Canada,	NCEP,	and	UKMet	models,	and	these	rankings	persist	for	
the	first	10days	of	24hr	average	forecasts.	For	the	5day	average	forecasts,	we	see	
the	same	result	as	for	the	24hr-averaged	forecast	for	,	0-4day	lead-time	window;	
however,	for	the	5-9day	and	10-15day	lead-time	windows,	we	see	an	interesting	
shifting	of	the	rankings	
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Figure	8:	correlations	of	the	Canada	(CMC),	ECMWF,	NCEP	(US),	and	UKMet	office	forecasts	when	
averaged	over	the	region’s	catchments,	as	a	function	of	lead-time	and	averaging	window	(24hr	and	
5day).	Note	that	the	UKMet	office	foreasts	only	extend	out	7	days.	

	
	

Multi-model Benefits 
	
In	this	subsection,	we	show	the	benefits	of	combining	all	weather	centers’	ensemble	
forecasts	together	to	produce	multi-model	ensemble	rainfall	forecasts	for	
hydrologic	applications,	using	the	catchment-integrated	rainfall	estimates	upstream	
of	our	river	height	gauging	locations	available	over	the	region.	What	we	find	is	that	
our	calibration	routine	provides	output	ensemble	forecasts	that	are	statistically	
“correct”	and	that	have	“trust”	in	their	likelihoods.	Also,	overall,	ECMWF	does	the	
best	job,	but	a	combination	of	other	centers	can	match	ECMWF’s	performance.	Also,	
the	full	multi-model	ensemble	forecast	has	roughly	an	additional	2-days	of	
increased	skill	over	just	using	the	best	center’s	(ECMWF)	forecasts.	
	
In	this	application,	we	use	quantile	regression	(QR;	as	discussed	above	and	below	in	
the	Appendix)	to	calibrate	ensemble	forecasts	from	each	of	our	individual	weather	
forecasting	centers,	and	a	combined	multi-model	forecasts	(in	the	figures	below,	we	
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show	forecasts	from	just	five	of	our	eight	centers:	CMA,	CMC,	CPTECH,	ECMWF,	
NCEP;	with	each	center	having	a	different	number	of	ensembles).	Our	output	in	each	
case	is	a	resultant	9-member	ensemble	forecast.	Also	in	this	application,	the	
regressors	we	use	for	QR	are	the	ensemble	mean	forecast	from	each	center,	and	the	
ranked	ensemble	member	corresponding	closest	to	the	ensemble	quantile	we	are	
calibrating	for.	To	assess	the	skill	of	the	multi-model	forecasts,	we	use	a	number	of	
verification	metrics	–	see	the	appendix	below	for	details.	
	
Below	in	the	figure	we	show	time-series	of	quality-controlled	stream	gauge	heights,	
with	arrows	pointing	to	the	gauge	locations:	Bagmati	(station	007-mgd4ptn)	
gauging	station,	and	a	Lower	Ganges	(station	029-mgd5ptn)	gauging	station.	
Above	these	two	locations	we	catchment-integrate	rainfall	fields,	and	calibrate	these	
values	as	shown	in	the	rest	of	this	section.	
.	

	
Figure	9:	time-series	of	quality-controlled	stream	gauge	heights,	with	arrows	pointing	to	the	gauge	
locations.	Above	these	two	locations	we	catchment-integrate	rainfall	fields,	and	calibrate	these	values.	

Below	we	show	5-day	lead-time	calibrated	time-series	of	the	catchment-integrated	
ensemble	rainfall	forecasts	for	our	five	centers	(colored	lines),	along	with	the	
observed	(satellite	and	rain	gauge	combined	rainfall;	black	line),	along	with	multi-
model	forecasts	for	two	centers	(CMC	and	NCEP)	and	for	all	5	centers.		
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Figure	10:	5-day	lead-time	calibrated	time-series	of	the	catchment-integrated	ensemble	rainfall	
forecasts	for	our	five	centers	(colored	lines),	along	with	the	observed	(satellite	and	rain	gauge	combined	
rainfall;	black	line),	along	with	multi-model	forecasts	for	two	centers	(CMC	and	NCEP)	and	for	all	5	
centers.	
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Figure	11:	Same	as	the	figure	above,	but	for	the	catchment-integrated	rainfall	above	gauge	029-mgd5ptn.	

To	assess	the	skill	of	the	multi-model	forecasts,	we	use	a	number	of	verification	
metrics	–	see	the	appendix	below	for	details.	Below,	we	show	rank	histograms	(as	a	
verification	metric	of	how	“trust-worthy”	are	the	ensemble	forecast’s	range	–	see	
appendix)	of	the	5-day	lead-time	catchment-integrated	rainfall	above	our	two	
gauging	locations	compared	to	observed	rainfall.	For	rank	histograms,	the	“flatter	
the	better”	–	what	we	see	below	is	that	essentially	the	histograms	are	“flat”	(except	
for	some	statistical	randomness).	
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Figure	12:	rank	histograms	(as	a	verification	metric	of	how	“trust-worthy”	are	the	ensemble	forecast’s	
range	–	see	appendix)	of	the	5-day	lead-time	catchment-integrated	rainfall	above	our	two	gauging	
locations	compared	to	observed	rainfall.	For	rank	histograms,	the	“flatter	the	better”	–	what	we	see	
below	is	that	essentially	the	histograms	are	“flat”	(except	for	some	statistical	randomness).	

To	further	assess	the	skill	of	the	multi-model	forecasts,	we	compare	the	same	data	
(5-day	lead-time	catchment-integrated	rainfall	above	our	two	gauging	locations	
compared	to	observed	rainfall)	using	the	Brier	skill	score	metric	(again,	see	the	
appendix	below	for	details).	
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Figure	13:	Brier	skill	scores	as	a	function	of	lead-time	going	out	1-	to	15-days	in	advance	for	each	of	our	5	
centers	individually,	and	combined	into	multi-models.	The	blue	line	is	the	brier	skill	score	relative	to	a	
“persistence”	forecast,	and	the	green	lines	are	relative	to	“seasonal	climatology”.	Note	the	overall	
superiority	of	the	5-center	multi-model	for	all	lead-times.	

	
What	we	see	in	both	figures	above	(for	gauge	007-mgd4ptn)	and	below	(for	gauge	
029-mgd5ptn)	is	that	generally,	ECMWF	is	the	best	forecast	for	all	lead-times,	but	
that	the	combination	of	CMC	and	NCEP	can	strongly	compete	(and	possibly	out-
perform)	the	single	best	model	(ECMWF),	while	the	5-center	multi-model	generally	
provides	the	best	possible	forecast	for	all	lead-times.	
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Figure	14:	Same	as	the	figure	above,	but	for	the	catchment-integrated	rainfall	above	gauge	029-mgd5ptn.	

To	further	assess	the	skill	of	the	multi-model	forecasts,	we	compare	in	the	two	
figures	below	the	same	data	(5-day	lead-time	catchment-integrated	rainfall	above	
our	two	gauging	locations	compared	to	observed	rainfall)	using	the	RMSE	skill	score	
metric	(again,	see	the	appendix	below	for	details),	similar	to	what	was	shown	in	the	
two	figures	above	for	the	Brier	skill	score.	
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Figure	15:	RMSE	skill	scores	as	a	function	of	lead-time	going	out	1-	to	15-days	in	advance	for	each	of	our	
5	centers	individually,	and	combined	into	multi-models.	The	blue	line	is	the	RMSE	skill	score	relative	to	
a	“persistence”	forecast,	and	the	green	lines	are	relative	to	“seasonal	climatology”.	Note	the	overall	
superiority	of	the	5-center	multi-model	for	all	lead-times.	

For	the	RMSE	skill	score	(as	we	did	for	the	Brier	skill	score	earlier)	is	that	we	see	in	
both	figures	above	(for	gauge	007-mgd4ptn)	and	below	(for	gauge	029-mgd5ptn)	is	
that	generally,	ECMWF	is	the	best	forecast	for	all	lead-times,	but	that	the	
combination	of	CMC	and	NCEP	can	strongly	compete	(and	possibly	out-perform)	the	
single	best	model	(ECMWF),	while	the	5-center	multi-model	generally	provides	the	
best	possible	forecast	for	all	lead-times.	
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Figure	16:	Same	as	the	figure	above,	but	for	the	catchment-integrated	rainfall	above	gauge	029-mgd5ptn.	

Indirectly	we	can	also	assess	the	skill	of	each	weather	center’s	forecasts	by	
analyzing	the	percentage	of	usage	of	each	center’s	forecasts	in	the	calibration	
process.	As	seen	in	the	figure	below,	we	see	that	for	both	of	our	basins	above	the	
gauging	locations,	ECMWF	is	most	used,	as	well	as	for	all	the	basins	in	our	region	
(right-most	panel).	However,	the	relative	contributions	from	the	other	centers	
varies	by	location.	
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Figure	17:	percentage	of	usage	of	each	center’s	forecasts	in	the	calibration	process.		For	both	of	our	
basins	above	the	gauging	locations	(left	and	center	panels),	ECMWF	is	most	used,	as	well	as	for	all	the	
basins	in	our	region	(right-most	panel).	However,	the	relative	contributions	from	the	other	centers	
varies	by	location.	

	
In	summary,	we	find	that	over	our	region	that	ECMWF	generally	outperforms	other	
centers	after	postprocessing	for	a	variety	of	verification	metrics. However,	the	
combination	of	NCEP	and	CMC	(Canada)	can	reach	similar	combined	skill	to	ECMWF	
(e.g.	for	our	two	example	basins). Multi-modeling	roughly	gains	two	days	of	forecast	
lead-time	as	a	rule-of-thumb.	Finally, we find in	general,	that	the	center	with	the	best	
forecast	skill	is	strongly	location/catchment-dependent 
	

Web-based Archive Comparisons 
	
Here	in	this	subsection,	we	conclude	by	providing	a	web-based	display	to	compare	
past	historical	rainfall	events	both	observed	and	forecasted	as	a	further	graphical	
way	to	see	skill	assessed	for	each	weather	center.	Note	that	we	reserve	a	more	
detailed	discussion	further	below	in	the	section,	“Dashboard	Framework	and	Data	
Access”.	
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Under	the	“Rain	Archives”	tab	of	our	project’s	web	site	
(http://bihar.rap.ucar.edu/archive/)	are	comparisons	with	the	July	and	August	
2017	severe	rain	and	flooding	events.	Seen	below	we	show	comparisons	of	24-hr	
accumulated	rainfall	from	July	9th	to	July	10th	for	5-day	lead-time	ECMWF	ensemble	
mean	forecast	compared	to	satellite	estimates	(top	panel	forecasts,	bottom	panel	
merged	satellite	rainfall).	This	plot	generally	shows	good	agreement,	but	with	
variations	at	small	spatial-scales.		
	

	
Figure	18:	comparisons	forecasts	(ECMWF	in	this	case)	and	observations	(satellite	rainfall)	as	seen	
during	the	July	2017	flooding	events	from	our	“archive”	web	page	(http://bihar.rap.ucar.edu/archive/).	
Shown	are	comparisons	of	24-hr	accumulated	rainfall	from	July	9th	to	July	10th	for	5-day	lead-time	
ECMWF	ensemble	mean	forecast	compared	to	satellite	estimates	(top	panel	forecasts,	bottom	panel	
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merged	satellite	rainfall).	This	plot	generally	shows	good	agreement,	but	with	variations	at	small	
spatial-scales.	

Comparing	the	above	figure	with	the	below,	which	is	the	same	plot	but	for	5-day	
accumulated		rainfall	from	July	9th	to	July	14th	for	ECMWF	forecasts	that	was	
initialized	on	July	9th	,	and	satellite	rainfall	accumulated	over	the	same	5	days	–	we	
still	see	general	agreement,	but	perhaps	a	bit	better	skill,	although	with	some	
displacement	discrepancies	in	the	fields.	
	

	
Figure	19:	Similar	to	the	figure	above,	but	for	5-day	accumulated	rainfall	starting	on	July	9th,	and	with	
ECMWF	forecasts	initialized	on	the	same	day.	
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Riverflow Data Components 
	
In	this	section,	we	discuss	the	observational	data	that	are	used	in	the	riverflow	
forecasting	system	in	operations	for	Bihar	and	the	FMISC.	
	

River Gauge Measurements 
	
Real-time	river	and	reservoir	stage	data	are	currently	collected	from	the	Flood	
Forecast	Monitoring	(FFM)	Directorate	of	the	Central	Water	Commission	(CWC)	
from	www.india-water.gov.in/ffs.	Data	for	each	station	of	interest	are	downloaded	
every	hour	from	the	web	services	using	the	site’s	custom	protocol.	The	stage	level,	
precipitation,	and	trend	are	stored	in	a	MYSQL	geospatial	relational	database	for	
easy	access	by	scientific	and	display	processes.	Those	records	are	retrieved	for	use	
in	initializing	the	forecast	model,	generating	forecast	plots,	and	populating	the	web	
display.	While	data	are	currently	only	retrieved	for	stations	in	the	Ganges	and	
Brahmaputra	basins,	the	process	could	easily	be	scaled	to	include	all	stations	
around	the	country.	Current	records	extend	from	February	28th	of	2015	to	the	
present.	
	
Several	services	have	been	created	to	retrieve	subsets	of	the	data	in	the	database	
and	return	that	data	in	a	specific	format.	The	web	display’s	service	is	of	particular	
utility	because	it	returns	the	data	prepared	in	a	standard	GeoJSON	format.	Web	
services	such	as	this	are	the	fundamental	building	blocks	of	data	interoperability.	
While	this	particular	service	does	not	support	the	full	Web	Feature	Service	(WFS)	
specification,	adding	such	capability	would	immediately	allow	it	to	be	used	with	a	
wide	array	of	WFS	clients:	model	initialization,	data	visualization,	and	system	
monitors.	
	

Satellite River “Width” Measurement 
	
The	Dartmouth	Flood	Observatory	(DFO),	in	partnership	with	the	Joint	Research	
Council,	is	providing	multi-site	estimates	of	river	width	for	both	the	Ganges	and	
Brahmaputra	(see	JRC-Ispra,	http://www.gdacs.org/floodmerge/	and	DFO,	
http://www.dartmouth.edu/~floods/).	These	estimates	are	publically-available	at	
http://old.gdacs.org/flooddetection/.		Actual	measurements	are	of	upstream	
relative	changes	in	emissivity	due	to	changes	in	river	width	(microwave	imagery	
visible	through	cloud	cover).	This	signal	is	then	effectively	“advected”	to	
downstream	forecasting	locations	(see	Stage-Discharge	Relationship	Flood	
Forecasting	subsection	below).	
.	
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Quality Control 
	
In	this	subsection	we	present	our	automated	quality	control	method	implemented	
for	river	stage,	discharge,	and	satellite-derived	“river	width”	time	series	data.	For	
operational	flood	forecasting	over	a	large	domain	with	multiple	stage	reading	sites,	
automated	quality	control	(QC)	of	measurements	is	essential	to	providing	accurate	
forecasts,	without	spurious	values	being	ingested	and	corrupting	the	forecasting	
algorithms.	We	have	been	collecting	stage	measurements	and	archiving	them	into	a	
MYSQL	database.	However,	there	are	appreciable	errors	found	in	almost	every	one	
of	these	sites.	To	see	examples,	go	to	the	“Flow	Forecasts”	tab	found	under	our	
project	website,	http://bihar.rap.ucar.edu/flow/	(discussed	further	below).	Clicking	
on	a	visible	station	(dots),	shows	the	original	time	series	of	record	for	this	station	in	
the	lower	part	of	the	screen,	with	the	quality-controlled	time	series	shown	at	right.	
Notice	that	in	most	of	these	QC	figure	there	are	red	points	flagged	as	“bad”,	
turquiose	points	flagged	as	“duplicates”,	and	green	points	flagged	as	“questionable”	
(which	is	given	a	QC	number	varying	between	0-100).	Please	see	the	appendix	
below	for	more	details	on	our	quality-control	procedures.	Immediately	below,	we	
list	the	questionable	data	features	we	identify	and	how	they	are	flagged.	
	
QC score Meaning 
100 Good 

0-99 
questionable rate of change or possible stuck 
sensor 

-1 Missing 
-2 Isolated 
-3 too high/low 
-4 extreme rate of change 
-5 stuck sensor 
-11 Duplicate 
-12 missing neighbor (satellite QC only) 
Table	1:	QC	score	values,	and	their	meaning.	
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River Forecasting System 
	
The	system	developed	and	implemented	operationally	for	this	project	is	
restructured	such	that	multiple	forecasting	methods	can	be	operated	in	parallel	
(and	combined	into	a	“multi-model”	at	later	stages	of	the	system).	A	summary	of	the	
data	sources	used	in	the	forecasting	system	is	as	follows:	in	situ	river	stage	
measurements;	gridded	satellite	and	raingauge	estimates	from	3	sources,	ensemble	
weather	forecasts	from	8	weather	centers;	and	upstream	river	stage	measurements,	
upstream	river	“width”	esimates.	Multi-modeling	(combination	approaches)	these	
forecasts	still	allowing	the	separate	pieces	to	be	combined	to	optimize	forecast	skill.	
	
As	shown	in	the	figure	below	we	discuss	the	overall	forecasting	structure	used	in	
this	project	and	the	subsequent	forecasting	skill	analysis.	Shown	in	this	figure	below	
is	the	flow	chart	of	the	components	used	in	this	project.	This	flow	chart	is	similar	to	
that	used	in	the	CFAB	project	(Hopson	and	Webster	2010;	Webster	et	al	2010),	with	
ensemble	weather	forecasts,	satellite	precipitation	estimates,	and	river	flow	
measurements	used	as	“I.	Initial	Data	Input”	at	the	top.	However,	in	this	application,	
we	introduced	forecasts	from	8	centers	(TIGGE	forecasts,	now	going	out	to	16-day	
lead-times	--	previously	10days	for	the	CFAB	system),	an	additional	satellite	
precipitation	estimate	(JAXA),	and	new	upstream	river	flow	information	provided	
by	Central	Water	Commision	upstream	gages,	and	DFO-JRC	upstream	river	widths.	
These	new	upstream	data	sets	required	development	of	new	algorithms	(shown	
schematically	in	the	“Stage-Discharge	Relationship”	box	under	“III.	Hydrologic	
Modeling”,	and	discussed	below	in	a	lower	section).	As	a	result,	we	are	producing	
independent	ensemble	river	discharge	forecasts	based	on	these	different	
approaches.	
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Figure	20:	Flowchart	of	the	modified	CFAB	short-term	forecasting	scheme.	Five	steps	(I-V)	are	outlined	
schematically	and	within	each	is	a	brief	description	of	the	data	used,	tasks	performed	and	etc.	The	
arrows	show	the	path	of	the	data	through	the	system.		The	components	of	Step	I	(clear	boxes)	represent	
daily	inputs	into	the	scheme.	At	Step	II	(dotted	box),	the	TIGGE	ensemble	forecasts	are	corrected	
statistically	to	reduce	systematic	error.	Step	III	(hatched	boxes)	represents	the	hydrologic	modeling	
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process,	where	all	inputs	are	integrated	to	produce	river	flow	forecasts	at	our	87	forecasting	points.	Step	
IV	(checkered	box)	represents	the	process	by	which	all	hydrologic	uncertainties	are	accounted	for	in	the	
probabilistic	forecasting	process.	In	Step	V,	the	ensemble	forecasts	are	tailored	to	produce	probabilistic	
information	necessary	for	displays	and	user	needs.	Note	that	all	processes	below	the	horizontal	dashed	
line	are	done	independently	for	each	day	and	each	1-	to	16-day	forecast	lead-time.	
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Riverflow Forecasting Methods 
	
In	this	section	we	discuss	the	variety	of	approaches	we	developed	and	employed	in	
the	generation	of	flood	forecasts	at	locations	within	Bihar.	We	discuss	each	of	these	
individually	as	discussed	below,	starting	with	the	method	we	developed	to	estimate	
rating	curves	from	the	stage	data	we	have	been	collecting	for	gauging	locations	
within	Bihar.	We	anticipate	that	the	FMISC	has	rating	curves	at	many	of	these	
locations	already,	and	believe	access	to	these	by	this	consultant	could	lead	to	
increases	in	the	skill	of	the	river	flow	forecasts	that	we	are	providing.	
	

Rating Curve Estimation 
	
In	many	parts	of	the	globe,	one	may	have	access	to	approximate	river	height	(stage)	
measurements	via	remote	sensing	or	other	means,	but	without	access	to	the	
corresponding	river	flow.	In	this	section	we	discuss	the	method	and	present	the	
results	of	a	method	to	approximate	rating	curves	(estimates	of	river	flow	from	stage	
measurements)	where	there	are	no	discharge	measurement	available	to	us,	using	
discharge	measurements	from	other	locations	in	the	river	network	(upstream	or	
downstream).	We	applied	our	approach	to	the	Bihar	in	situ	Indian	Central	Water	
Commission	stage	gaging	sites	(the	same	locations	we	are	providing	operational	
river	discharge	forecasts	for)	as	part	of	this	project.	Later	in	the	subsection,	we	also	
present	a	“twist”	on	the	traditional	rating	curve	relationship	to	also	derive	a	“rating	
curve”	for	the	relationship	of	upstream	stage	to	downstream	discharge	(as	an	
additional	function	of	time	lag).	These	relationships	can	be	directly	used	for	the	
forecasting	problem,	with	the	optimal	lag	anticipating	flood	wave	travel	times,	and	
the	“scatter”	(error)	about	the	rating	curve	fit	also	provides	a	metric	for	the	degree	
of	predictability	the	relationship	holds,	as	well	as	a	weighting	metric	for	combining	
with	other	upstream	gages.	
	
We	have	designed	an	approach	for	estimating	rating	curves	for	each	of	the	relevant	
river	gaging	sites,	converting	the	stage	([m])	into	discharge	([m3/s]),	where	there	is	
no	(or	at	least,	we	have	no	access	to)	in	situ	river	flow	observations.	Similarly,	the	
approach	has	also	derived	a	“rating	curve”	of	downstream	river	flow	(at	a	future	
lagged	time)	from	upstream	stage	measurements,	which	is	something	very	useful	
for	hydrologic	forecasting	purposes.	For	our	data,	we	used	available	stage	
measurements	for	locations	along	the	river	networks	in	Bihar,	along	with	
downstream	discharge	measurements	at	Hardinge	Bridge	(Ganges)	in	Bangladesh	to	
estimate	hydrologic	rating	curves	at	each	gaging	location	upstream.	The	underlying	
process	to	derive	the	“rating	curves”	at	the	same	location	where	the	stage	
measurements	were	collected	is	discussed	first	below.	
	
Stage	measurements	of	the	location	we	want	to	derive	discharge	values	at	
(Stgupstream)	were	first	quality	controlled	as	described	in	the	previous	section.	For	
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each	location,	this	cleaned	stage	data	were	matched	with	corresponding	discharge	
values	at	the	respective	downstream	location	(Qdownstream)	where	we	have	discharge	
data	available.	Stage	and	discharge	data	were	matched	by	date;	stage	measurements	
+/-12	hours	were	considered,	and	if	there	were	multiple	stage	observations	within	
the	window,	the	closest	to	00:00GMT	was	selected,	as	this	is	nominally	the	time	of	
the	discharge	observations.		
	
Once	the	pairing	was	done,	the	downstream	discharge	values	were	“normalized”	by	
the	ratio	

(𝑃 − 𝐸𝑇)''''''''''''
()*+,-./

(𝑃 − 𝐸𝑇)''''''''''''0123*+,-./
	

which	is	the	spatial	and	temporal	average	of	the	precipitation	minus	
evapotranspiration	of	the	upstream	catchment	area	above	Stgupstream,	divided	by	the	
same	quantity	but	averaged	over	the	whole	catchment	area	above	the	downstream	
discharge	gage	location	(Qdownstream).	Precipitation	“P”	was	derived	from	our	merged	
satellite	precipitation	estimates,	and	evapotranspiration	“ET”	was	derived	from	the	
average	over	all	the	“analysis”	fields	of	our	8	THORPEX-TIGGE	weather	forecast	
products.	The	temporal	averaging	period	was	the	entire	2015	monsoon	season.	
	
To	reflect	the	travel	time	between	the	upstream	stage	measurement	location	and	
the	downstream	discharge	gauge,	data	were	matched	at	an	optimal	lag.	Two	
methods	of	determining	this	optimal	lag	were	employed:	in	the	first,	stage	
measurements	were	correlated	with	discharge	at	lags	of	0-30	days,	and	the	lag	that	
produced	the	maximum	correlation	value	was	selected.	In	the	second,	rating	curves	
were	fit	on	stage	and	discharge	at	multiple	lags,	and	the	lag	producing	the	best	fit,	as	
determined	by	Nash-Sutcliffe	efficiency	(NSE)	was	selected.	These	lags	were	
compared	to	a	calculated	travel	time	determined	by	distance	between	the	stage	
measurement	location	and	the	discharge	gauge,	as	well	as	channel	slope.	The	
traditional	rating	curve	form	was	used	for	stage	Si	converted	to	discharge	Qi,		
	

Qi	=	A	(	Si	–	S0	)n	
	

with	the	parameters	A,	S0,	and	n	determined	by	nonlinear	least	squares	
optimization.	(Multiple-part	rating	curves	were	also	considered;	however,	visual	
inspection	of	the	one-part	fitting	for	a	variety	of	sites	didn’t	show	clear	enough	
distinction	between	the	fit	to	low	and	high	flows	to	justify	introducing	the	added	
complexity.)	
	
Starting	at	the	most	downstream	gages,	the	process	was	then	extended	gage-by-
gage	upstream:	using	newly-estimated	rating	curves	and	thus	discharge	values	at	
sites	just	upstream	of	Hardinge	Bridge	(Ganges),	these	sites	and	their	discharge	
values	were	then	used	to	estimate	rating	curves	at	sites	further	upstream,	and	so	on.	
At	each	location,	the	optimal-fit	rating	curve	(as	determined	by	the	largest	NSE)	was	
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selected	by	comparing	with	previously	derived	rating	curves	that	used	discharge	
from	locations	further	downstream.		
	
The	underlying	process	to	derive	the	“rating	curves”	at	downstream	(i.e.	
“forecasting”)	locations	was	done	identically	to	what	was	just	discussed,	except	the	
downstream	discharge	values	(Qdownstream)	were	not	first	“normalized”	before	the	
optimal	fitting	was	carried	out.	

Quality of Rating Curve Fit Filtering 
Rating	curve	estimates	were	fitted	for	the	stage	gaging	locations	as	discussed	above.	
However,	this	set	needed	to	be	further	reduced	down	for	forecasting	purposes,	
given	that	the	(unconstrained)	fitting	of	our	rating	curve	functions	converged	to	
unphysical	exponents.	The	traditional	rating	curve	form	was	used	for	stage	Si	
converted	to	discharge	Qi,		
	

Qi	=	A	(	Si	–	S0	)n	
	
with	the	parameters	A,	S0,	and	n	determined	by	nonlinear	least	squares	
optimization.	However,	the	exponent	“n”	found	for	many	of	our	gauging	locations	
was	either	significantly	less	than	a	value	of	one,	or	significantly	greater	than	a	value	
of	5.	As	such,	these	gauging	locations	were	(temporarily)	removed	from	our	list	of	
forecasting	sites	(but	can	very	easily	be	added	back	in	if	additional	rated	stage-Q	
valued	could	be	provided)..	
	

Stage-Discharge Relationship Flood Forecasting  
	
This	approach	builds	from	the	“in	situ	and	forecasting	rating	curves”	we	discussed	
above,	that	derived	a	“rating	curve”	of	downstream	river	flow	(at	a	future	“optimal”	
lagged	time)	from	upstream	stage	measurements;	which	is	something	very	useful	
for	hydrologic	forecasting	purposes.	Using	these	rating	curves	with	observed	stage	
(whether	from	CWC	stage	gage	or	river	“width”	measurements),	forecasts	of	
downstream	discharge	can	be	produced	at	0	day	(current	condition)	to	16	day	
forecasts	(or	beyond).	
	
The	figures	and	figure	captions	immediately	below	show	conceptually	the	idea	
behind	these	forecasts	and	how	they	are	combined,	where	we	are	capitalizing	on	
travel-time	delays	from	upstream	to	downstream	locations.	
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Figure	21:	conceptual	idea	of	using	upstream	stages	(stage	1	and	stage	2)	to	forecast	a	downstream	
location	based	on	a	5-day	flood	wave	travel	time	from	the	most	upstream	to	downstream	locations.	
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Figure	22:	depending	on	the	number	of	upstream	gauges,	multiple	forecasts	can	be	estimated,	one	for	
each	gage.	

	



                       
 

  Bihar Flood Management Improvement Support Centre                          50 

Implement and Operationalize a Customized Meteorological Framework 

	
Figure	23:	the	error	of	each	upstream	gauge	(an	example	of	which	is	shown	here	from	our	website	
provided)	forecast	is	available	directly	from	the	derived	“rating	curves”.	
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Figure	24:	the	error	from	the	derived	rating	curves	of	upstream	gauges	is	then	combined	in	the	manner	
shown	in	this	figure,	to	generate	an	“optimal”	combined	forecast.	

	

	
Figure	25:	results	of	our	combined	upstream	stage	forecast	for	one	forecasting	site.	The	blue	is	the	
observer,	red	is	the	forecast,	and	the	grey	represents	to	the	forecast	period.	
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Quantile Regression – individual ensemble and multi-model forecasting 
	
In	this	subsection,	we	briefly	discuss	a	statistical	forecasting	and	correction	
approach	we	introduced	into	this	project	that	we	rely	on	heavily	in	this	project,	
called	“quantile	regression”	(QR).	In	particular,	we	use	this	approach	in	both	“III.	
CLM	Generation”,	and	“IV	Accounting	for	Uncertainties	and	Final	Error	
Correction”in	the	figure	above	showing	the	riverflow	forecasting	scheme	(as	well	as	
used	in	the	precipitation	forecast	calibration	for	individual	centers	and	in	their	
multi-modeling).	We	defer	more	technical	details	of	this	approach	to	the	appendix	
below.	Quantile	regression	has	been	little	used	in	the	atmospheric	and	hydrologic	
communities.	We	introduced	this	approach	for	this	project,	relaying	on	it	heavily	to	
generate	ensemble	forecasts	and	forecast	error	corrections.	Similar	to	simple	linear	
regression	which	minimizes	the	square	error	of	a	model	to-be-fit,	QR	instead	
minimizes	the	absolute	error,	but	done	for	each	“quantile”	of	the	distribution	one	is	
interested	in.	The	result	is	that	multiple	models	are	generated,	one	for	each	quantile,	
and	each	provides	a	reliable	probability	of	what	values	the	river	flow	will	
exceedance	on	a	daily	basis	(such	that	“flat	histograms”	of	the	forecasts	are	
produced	–	described	further	in	an	appendix	below).	As	we	apply	it	for	our	
forecasting	application,	we	ensure	that	the	resultant	ensemble	discharge	forecasts	
are	no	worse	than	the	climatological	average	flow	after	the	model	fitting	process.	
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Dashboard Framework and Data Access 
	
In	this	section	we	discuss	the	customized	(and	further	customizable)	dashboard	
framework	we	have	developed	for	the	FMISC.	We	provide	an	overview	of	displays	of	
current	conditions	occurring	over	Bihar;	another	page	devoted	to	THORPEX	TIGGE	
ensemble	weather	prediction	and	satellite-based	precipitation	products;	another	
page	devoted	to	comparing	past	severe	rainfall	events	over	Bihar;	and	a	page	
devoted	to	flood	forecasts	and	observations,	again,	over	Bihar.	We	provide	an	
overview	of	the	process	to	access	this	information	on	this	site,	with	the	site	itself	
found	at:	http://bihar.rap.ucar.edu/.	We	also	discuss	the	forecast	products	we	
provide	directly	for	download	from	FTP	access.	
	

Current Condition Overview 
	
We	are	providing	a	view	of	current	conditions	in	watershed	from	the	main	tab	of	
our	website,	both	in	terms	of	rainfall	and	in	river	flow,	as	seen	in	the	screenshot	
figure	below.	Gauging	locations	are	shown,	along	with	their	level	of	alert	given	by	
their	color.	By	clicking	on	a	particular	gauging	location,	the	upstream	basin	area	
above	the	gauge	is	highlighted,	showing	also	the	recent	rainfall	that	has	fallen	in	that	
basin.	The	click	also	pops	up	a	subwindow	showing	the	river	stage	forecasts	for	that	
gauge,	as	seen	below.	
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Figure	26:	Screenshot	of	current	conditions	occurring	in	the	region,	as	seen	from	our	main	home	page	
for	the	project.	

 

Displays of Ensemble Numerical Weather Prediction and Satellite Precipitation 
	
In	this	section,	we	provide	an	overview	of	displays	of	our	THORPEX	TIGGE	ensemble	
weather	prediction	and	satellite-based	precipitation	products.	We	provide	an	
overview	of	the	process	to	access	this	information	below,	with	the	site	itself	found	
at:	http://bihar.rap.ucar.edu/rainfall/.	
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Because	of	the	essential	importance	rainfall	plays	in	generating	runoff,	many	
flooding	events	can	be	anticipated	just	by	locating	areas	of	severe	rainfall,	especially	
relevant	for	flash	flood	events	occurring	over	smaller	catchment	spatial	scales.	With	
this	motivation,	we	are	generating	an	hourly-updated	display	of	rainfall	occurring	
over	Bihar	(follow	the	link	in	our	project’s	web	site	under	“Bihar	Rainfall”).			
	

	
Figure	27:	Overview	of	the	processing	and	display	of	catchment-integrated	real-time	satellite	
precipitation	and	TIGGE	ensemble	precipitation	forecasts	over	Bihar	catchments.	

	
This	interactive	web	display,	shown	in	outline	form	in	the	figure	above,	gives	users	
an	easy	way	to	visualize	and	compare	precipitation	accumulation	for	different	
weather	models	and	satellite	products.	The	near	real	time	web	display	(currently)	
incorporates	ensemble	precipitation	forecasts	from	four	of	our	eight	THORPEX-
TIGGE	forecast	centers	and	our	merged	NASA	TRMM,	NOAA	CMORPH,	and	JAXA	
GSMaP	satellite	precipitation	product.		This	portal	is	an	interactive	web	display	that	
expands	Geographic	Information	Systems	(GIS)	mapping	capabilities	to	visualize	
forecast	precipitation	accumulations	averaged	over	watershed	basins.	Models	and	
satellite	estimates	are	calculated	to	24	hour	and	5	day	average	accumulations.		The	
models	that	are	displayed	are	the	European	ECMWF,	the	UK	UKMET,	the	Canadian	
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CMC,	and	the	USA	NCEP	models.	Seasonal	forecasts	of	the	North	American	Multi-
model	Ensemble	(NMME)	are	also	provided,	calculated	at	1month	and	3month	
accumulations,	from	seven	different	models:	CFSv2,	CMC1,	CMC2,	GFDLFLOR,	GFDL,	
NASA,	NCARCCSM4.	Each	model	has	a	different	number	of	ensemble	members.		The	
ensemble	average	and	other	statistics	are	aggregated	to	a	catchment	and	sub-
catchment	basin.		By	default	the	larger	catchments	are	displayed.		When	zoomed	in	
the	sub-catchment	become	visible	for	a	more	detailed	view.	Ensemble	average	per	
watershed	is	being	displayed	on	the	map	and	ensemble	statistics	for	the	watershed	
are	available	through	a	popup	window.			
	
This	portal	is	built	using	a	number	of	technologies.		All	forecast	and	satellite	
products	are	exported	to	text	comma	separated	values	file	(.csv).		This	file	format	
allows	data	to	be	saved	in	a	table	structured	format	but	as	a	text	file.		The	text	file	
forecasts	are	produced	every	24	hours.		Once	the	forecast	and	satellite	precipitation	
products	are	created,	a	GIS	python	script	is	automatically	run	to	convert	these	data	
into	a	spatial	GIS-friendly	format.		The	web	application	is	built	using	a	free	open-
source	JavaScript	API	called	Leaflet.		This	library	is	ideal	for	powerful	data	driven	
visualizations.		This	portal	takes	advantage	of	the	most	appropriate	tools	and	
technologies	to	easily	display	the	information	from	the	weather	forecast	and	
satellite	products.	In	what	follows,	we	step	through	the	process	of	displaying	the	
different	products	found	on	this	site.	
	
Step	1	–	Select	a	model	or	Satellite	product	

	
Figure	28:	Step	1	–	Select	a	model	or	Satellite	product	
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Step	2	–	Select	the	forecast	initialization	time.		

	
Figure	29:	Step	2	–	Select	the	forecast	initialization	time.		

	
Step	3	–	Select	the	24	hour	or	5	day	accumulation	date.	

	
Figure	30:	Step	3	–	Select	the	24	hour	or	5	day	accumulation	date.	
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Result	-	An	interactive	web	map	is	displayed	with	zoom	and	pan	functionality.			

	
Figure	31:	Result	-	An	interactive	web	map	is	displayed	with	zoom	and	pan	functionality.				

	
By	clicking	on	a	watershed	a	popup	window	appears	with	more	detailed	
information	about	the	model	ensemble	statistics.			
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Figure	32:	By	clicking	on	a	watershed	a	popup	window	appears	with	more	detailed	information	about	
the	model	ensemble	statistics.			

	
When	zoomed	in	the	sub-catchments	are	displayed	for	a	more	detailed	view.	

	
Figure	33:	When	zoomed	in	the	sub-catchments	are	displayed	for	a	more	detailed	view.	

 

Displays of Water Level Forecasts and Observations 
	
In	this	subsection,	we	discuss	the	processes	that	led	to	the	display	of	CWC	in	situ	
river	stage	gauging	data	found	at	http://bihar.rap.ucar.edu/flow/.	This	site	also	
provides	displays	of	our	operational	ensemble	river	forecasts	under	a	pilot	testing	
link.	The	web	display	is	map-based	in	order	to	visualize	the	geographic	extent	of	the	
river	basins	and	to	allow	gridded	model	forecasts	to	be	easily	displayed.	Stations	in	
the	display	may	be	selected	by	clicking	them	with	the	mouse.	When	selected,	a	
station	displays	its	detail	information	in	a	pop-up	window.	Selected	stations	are	also	
automatically	queried	to	generate	plots	of	observations,	ensemble	forecasts,	and	
quality	control	analyses	at	that	location.	Examples	are	shown	in	the	figures	
immediately	below.	
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Figure	34:	displays	provide	visualize	of	the	geographic	extent	of	the	river	basins,	observations,	ensemble	
forecasts,	and	quality	control	analyses	at	that	location.	Further	above	is	the	live	display,	and	
immediately	above	is	a	selection	of	two	gauge	forecasts	over	Bihar.	

	
The	display	is	written	in	JavaScript,	so	that	it	may	be	viewed	in	a	web	browser	on	a	
desktop	computer	or	a	mobile	smartphone.			
	

Review of Past Severe Events 
	
Displays	of	rainfall	comparisons	showing	forecasted	and	observed	rainfall	for	past	
severe	events	over	Bihar	were	discussed	further	above	in	this	report,	and	are	found	
at:	http://bihar.rap.ucar.edu/archive/	from	our	website.	

 

Amazon Web Services Access 
	
Our	website	and	much	of	our	computations	are	being	computed	and	hosted	live	on	
the	cloud.	This	account	can	be	shared	with	(and	given	to)	the	FMISC.	This	site	can	be	
viewed	at:	http://ec2-35-165-102-63.us-west-
2.compute.amazonaws.com/forecast/index.php	

Direct Data Access (FTP) 
	

Discharge Displays

Bagmati Station 
Khagaria 007-mgd4ptn 

Ganges Station Azmabad
029-mgd5ptn

Main Display showing all gages

Quality Control of Obs

Obs Time-series

16-day Lead-time 
ensemble discharge 
forecasts
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Operational	daily	updated	forecasts	are	also	being	provided	at	the	NCAR	FTP	site	in	
four	different	formats	(ESRI	ASCII,	netcdf,	CSV,	and	PNG)	for	use	by	the	FMISC	and	
two	other	consultants	working	in	the	region.	This	site	is	found	at	
the	following	FTP	site	at:	ftp://ftp.rap.ucar.edu/incoming/irap/bihar/	
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Appendix A -- Quality Control Details 
	

River gauge quality control 
	

Raw	river	level	gauge	data	can	occasionally	have	errors,	such	as	those	shown	

in	Error!	Reference	source	not	found..		Therefore,	it	is	important	to	have	quality	

control	(QC)	procedures	in	place,	to	flag	bad	data,	as	well	as	identify	suspicious	data.		

We	employed	several	quality	control	procedures	on	several	months	of	data	from	

over	300	river	level	gauges	in	India.		The	data	from	each	station	were	used	to	

develop	quality	control	thresholds	for	its	own	data;	this	assumes	that	there	is	a	

sufficient	amount	of	data	(e.g.,	several	months),	and	that	most	data	at	each	station	

are	accurate.		The	quality	control	procedures	were	used	to	identify	the	following	

common	errors:	1)	multiple	observations	at	the	exact	same	time,	2)	data	points	that	

are	exceptionally	larger	or	smaller	than	nearly	all	other	observations	at	that	station,	

3)	excessively	rapid	changes	in	river	level	data,	and	4)	river	levels	that	are	indicated	

to	be	constant	for	too	long	that	are	likely	the	result	of	a	stuck	gauge.		Due	to	the	

large	amount	of	data	to	be	QCed,	it	was	important	that	the	procedures	be	designed	

to	be	very	computationally	efficient.		Different	QC	values	are	used	to	identify	values	

that	fail	each	procedure,	while	a	QC	value	of	100	indicates	highly	probable	good	

data.		Since	data	are	compared	with	each	other	for	each	QC	procedure,	data	that	fail	

one	procedure	are	not	considered	for	comparison	in	future	procedures;	likewise,	

each	procedure	rejects	erroneous	data	one-by-one,	from	the	most	extreme	to	the	

least,	so	that	nearest-neighbor	procedures	do	not	falsely	identify	good	data.		

However,	the	raw	data	value	is	always	retained,	accompanied	by	its	appropriate	QC	

flag	value.		The	details	of	each	procedure	are	laid	out	below.	

The	first	procedure	determines	if	the	raw	data	are	actual	levels	and	dates,	

and	not	seeming	nonsense.		Any	levels	and/or	dates	that	are	unidentifiable	are	

marked	with	the	QC	value	of	-1	for	missing	(Table	2).	

QC score Meaning 
100 Good 
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0-99 
questionable rate of change or possible stuck 
sensor 

-1 Missing 
-2 Isolated 
-3 too high/low 
-4 extreme rate of change 
-5 stuck sensor 
-11 Duplicate 
-12 missing neighbor (satellite QC only) 
Table	2:	QC	score	values,	and	their	meaning.	
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Figure	35:	River	level	data	from	station	001-MBDGHY.		The	dot	color	identifies	the	data	as:	(blue)	likely	
valid	river	levels,	(red)	very	likely	erroneous	data,	(green)	questionable	data,	and	(cyan)	data	observed	
at	the	exact	same	time.	

	 The	second	procedure	identifies	all	observations	at	the	exact	same	time.		If	

they	all	have	identical	river	levels,	only	one	is	retained.		Of	those	that	share	a	

common	time,	but	are	not	identical,	there	are	two	tests	employed.		If	there	are	only	

two	different	observations	at	the	exact	same	time,	the	one	with	the	greater	

difference	with	its	other	nearest	neighbor	in	time	is	identified	with	a	QC	value	of	-
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11.		If	there	are	three	or	more	different	river	levels	sharing	the	same	time	stamp,	the	

median	is	calculated,	and	all	observations	are	marked	with	a	QC	value	of	-11,	except	

for	the	level	closest	to	the	median.		Examples	of	multiple	observations	identified	at	

the	exact	same	time	are	indicated	by	cyan	dots	on	Error!	Reference	source	not	

found..		

	 The	third	procedure	identifies	data	points	with	no	other	nearby	data	points	

in	time.		If	a	value	has	no	other	valid	value	within	10	days,	it	is	marked	by	a	QC	value	

of	-2.	

The	fourth	procedure	identifies	gauge	levels	that	are	exceptionally	lower,	or	

higher,	than	nearly	all	other	levels.		To	do	this,	the	10th	and	90th	percentiles	are	

calculated.		The	Xth	percentile	is	defined	as	the	level	at	which	only	X%	of	the	river	

levels	are	lower	than	that	value.		Then,	the	difference,	∆𝐿67+897+8 ,	between	the	10th	and	

90th	percentiles	is	calculated.	If	a	gauge	level	is	greater	than	𝐿97+8 + 𝑐< ∗ ∆𝐿67+897+8 ,	or	

lower	than	𝐿67+8 − 𝑐> ∗ ∆𝐿67+897+8 ,	it	is	marked	with	a	QC	value	of	-3.		The	constants	cH	

and	cL	were	optimized	so	that	they	rejected	most	excessively	high	and	low	values,	

while	not	falsely	identifying	any	valid	values.		These	optimized	values	were	found	to	

be	cH	=	4.1	for	and	cL	=	1.3.		Examples	of	river	gauge	levels	identified	by	this	

procedure	are	shown	in	Fig.	2.	

The	fifth	procedure	identifies	data	with	excessively	rapid	time	rates	of	

change	on	either	side,	namely	sharp	spikes	and	dips	in	the	data.		This	is	done	by	

calculating	the	time	rate	of	change,	both	before	and	after	each	data	point,	and	then	

summing	the	two	together:	?∑ A0>
0B
AC.		Next,	the	95th	percentile,	is	calculated	from	all	

these	values	for	each	station.		If	any	∑A0>
0B
A	exceeds	𝑐B ∗ ∑ A

0>
0B
A
9D+8

,	it	is	marked	with	a	

QC	value	of	-4.		The	value	of	cT	was	optimized	at	16	so	that	it	rejected	most	bad	data,	

yet	did	not	reject	hardly	any	good	data.		Examples	of	data	identified	by	this	QC	

procedure	are	shown	by	red	dots	on	Fig.	1.		There	remained,	however,	additional	

minor	errors	that	were	not	flagged	by	this	procedure,	such	as	some	of	those	shown	

in	green	dots	on	Fig.	1.		Therefore,	another	smaller	constant,	cB,	was	calculated	to	
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identify	data	points	with	rapid	changes	on	either	side;	if	their	value	∑ A0>
0B
Aexceeded	

cB	they	were	given	a	QC	score	of	0-99,	according	to	the	following	equation:	

	100 − 100 ∗
∑AGHGIAJKL∗∑A

GH
GIAMNOP

KI∗∑A
GH
GIAMNOP

JKL∗∑A
GH
GIAMNOP

.		The	higher	the	score,	the	more	probable	it	is	

that	the	data	is	good,	while	the	lower	scores	indicate	a	high	probability	it	is	bad.		cB	

was	optimized	at	5	to	identify	nearly	all	visually	bad	gauge	level	spikes.		Examples	of	

gauge	levels	identified	by	a	score	of	0-99	are	indicated	by	green	dots	in	Fig.	1.	

Lastly,	the	sixth	procedure	identifies	river	gauge	levels	that	have	been	

constant	for	an	unusual	length	of	time,	indicative	of	a	possible	stuck	gauge.		Since	

the	temporal	resolution	of	the	river	level	data	varies	substantially	with	time	and	

location,	a	count	of	successive	constant	observations	(s),	of	any	time	length,	were	

used	to	identify	possible	stuck	gauges.		A	lower	threshold	sB	was	used	to	identify	a	

possible	stuck	gauge,	while	an	upper	threshold	sT	was	used	to	indicate	a	nearly	

certain	stuck	gauge.		All	level	data	constant	for	greater	than	sT	consecutive	

observations	are	given	a	QC	score	of	-5,	while	all	data	constant	between	sB	and	sT	

time	steps	were	given	a	QC	score	between	0-99,	according	to	the	equation:	100 −

100 ∗ *J*L
*IJ*L

.		All	river	level	data	in	a	string	of	constant	values	are	given	the	same	QC	

score,	from	the	first	to	the	last.	

The	next	steps	to	implement	in	this	QC	system	are:	1)	collect	at	least	one	year	

of	river	gauge	level	data,	in	order	to	capture	at	least	one	full	monsoon	cycle;	this	will	

allow	for	re-calculation	of	better	thresholds	for	each	station.		2)	Determine	a	way	to	

reject	“spikes”	of	data	that	are	more	than	a	single	point.		3)	Identify	spikes	of	bad	

data	with	missing	temporal	neighbors.		There	are	certainly	other	QC	procedures	that	

can	also	be	developed	and	implemented	on	these	data.	
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Figure	36:	River	level	data	from	station	016-MGD3VNS,	showing	examples	of	erroneous	extremely	high	
and	low	river	gauge	values.	

 

Satellite-deived river width quality control 
	

Similar	quality	control	procedures	were	used	to	identify	possible	erroneous	

data	from	satellite-derived	river	width	products.		These	river	width	estimates	for	

very	large	rivers	are	obtained	by	using	satellite	microwave	emissivity	values	to	

approximate	the	percentage	of	water	in	a	pixel	(~10	km	x	10	km),	M,	compared	to	

that	of	a	nearby	pixel	with	no	water,	C,	to	create	a	ratio.		This	ratio	can	then	be	used	

to	estimate	river	width	and	subsequently	the	river	height.		An	example	time	series	of	

M/C	ratio	for	a	location	on	the	lower	Ganges	River	is	shown	in	Fig.	3.	
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The	first	QC	procedure	identifies	river	widths	that	are	exceptionally	lower,	or	

higher,	than	nearly	all	other	levels	in	the	time	series;	this	is	done	in	the	same	way	as	

the	river	gauge	height	QC	procedure,	by	identifying	the	10th	and	90th	percentiles,	

and	using	those	to	create	upper	and	lower	thresholds	for	the	data.		If	data	fall	

outside	these	thresholds,	they	are	indicated	with	a	QC	flag	of	-3.		The	second	QC	

procedure	is	also	a	replication	of	a	gauge	height	procedure,	which	identifies	data	

with	excessively	rapid	time	rates	of	change	on	either	side;	extreme	rates	of	change	

give	a	QC	value	of	-4,	while	questionable	rates	of	change	give	QC	scores	of	1-99.		

Since	these	QC	procedures	flag	a	significant	minority	of	values	(e.g.,	Fig.	3),	a	third	

QC	flag	(-12)	is	used	to	identify	times	with	missing	or	bad	data	immediately	before	

and/or	after,	that	were	not	able	to	be	tested	using	the	extreme	rate	of	change	QC	

procedure.		The	-12	QC	flags	do	not	indicate	that	the	data	are	bad,	just	that	there	is	

lower	confidence	in	their	accuracy,	since	they	aren’t	able	to	be	sufficiently	tested.	
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Figure	37:	Time	series	of	M/C	ratio	for	a	location	on	the	lower	Ganges	River.		Pixel	colors	indicate	its	QC	
flag.	
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Appendix B -- Quantile-to-Quantile Mapping 
	
Generally,	all	practical	hydrologic	models	require	some	form	of	calibration	arising	
from	reasons	such	as	incomplete	knowledge	of	watershed	properties	and	the	
necessary	parameterization	of	transport	at	unresolved	scales.	Through	the	
hydrologic	model	parameter	calibration	process,	some	of	the	additional	errors	in	
the	watershed	inputs	(rainfall,	in	particular)	can	also	be	implicitly	reduced	(e.g.	
runoff	errors	arising	from	an	over-bias	in	rainfall	forcing	can	be	implicitly	
minimized	by	increasing	the	parameterization	of	evapotranspiration).	However,	
such	bias	reduction	through	calibration	does	not	occur	if	there	are	relative	errors	
between	more	than	one	input	of	the	same	physical	quantity.	In	particular,	using	both	
weather	forecasts	and	observationally-based	estimates	of	precipitation	
concurrently	to	generate	unbiased	discharge	forecasts,	requires	that	these	two	data	
sources	maintain	their	statistical	similarity	such	that	there	are	no	relative	biases	
between	their	statistical	moments	(mean,	variance,	and	skewness,	in	particular).	
Note	that	quantile	regression	(discussed	above)	could	also	provide	the	required	bias	
reduction	on	a	forecast-day-by-forecast-day	bases.	However,	because	we	feel	that	
the	merged	satellite	precipitation	product	(i.e.	“observations”)	inherently	have	their	
own	error,	we	hypothesize	it	is	more	optimal	to	only	utilize	a	more	“global”	
statistical	adjustment	of	the	TIGGE	precipitation	forecasts	to	require	them	to	only	be	
drawn	from	the	same	probability	distribution	function	as	the	observations.	
Quantile-to-quantile	(q-to-q)	mapping	described	next	is	designed	to	exactly	do	this.	
	
To	minimize	systematic	differences	in	the	hydrologic	model	inputs	that	can	lead	to	
systematic	hydrologic	forecasting	errors	(in	our	case,	satellite	precipitation	
estimates	[which	were	used	to	calibrate	the	hydrologic	models]	and	the	THORPEX-
TIGGE	ensemble	precipitation	forecasts	which	drive	the	hydrologic	model	forward	
in	time),	a	quantile-to-quantile	(q-to-q)	mapping	technique	was	implemented	in	this	
project.	As	applied	here,	the	q-to-q	technique	forces	each	TIGGE	ensemble	
precipitation	forecast	catchment-averaged	over	each	basin	we	are	forecasting	for	
(input	E,	Fig	3)	to	be	statistically	sampled	from	the	cumulative	distribution	function	
(CDF)	of	the	associated	observational	historical	record	(i.e.	satellite-precipiation	
estimates)	catchment-integrated	for	the	same	basin	(input	S	Fig	2).	In	essence,	this	
converts	the	numerical	weather	prediction	product	from	a	physical	variable	to	a	
probability	forecast	by	performing	a	bias	correction	at	each	quantile	of	the	forecast	
CDF.	The	manner	in	which	the	technique	is	applied	to	the	TIGGE	medium-range	
forecasts	is	described	below	in	more	detail.	
	
Calculate	the	monsoon	season	“climatological”	empirical	CDF’s	for	both	the	
observations	and	the	forecast	model	catchment-integrated	valuesfor	basin	i.	The	
observational	(o)	climatological	CDF	for	basin	i	and	precipitation	amount	y,	 ,	is	
derived	from	the	merged	satellite	data	(available	from	2002	onwards).	The	forecast	
(M)	CDF’s	at	lead-time	f	and	basin	i,	 ,	are	derived	from	stored	forecasts	

Co
i (y)

CM
i, f (y)
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(available	2014	onwards),	which	are	first	catchment-integrated	over	the	same	
basin,	and	the	CDF	computation	is	done	independently	for	each	forecast	lead-time	f	
(24	hour,	48	hour,	etc.).	Formally,	these	CDF’s	are	given	by	
  (1)

 (2) 

where	P{a}	denotes	the	probability	of	the	event	a,	and	x	(y)	a	specific	value	of	the	
generic	random	variable	X	(Y)	representing	the	observed	(forecast)	weather	
variable	of	interest	(here,	precipitation	only).	Using	these	CDF’s,	a	direct	quantile-
by-quantile	bias	correction	is	made	to	each	basin	i,	lead-time	f,	and	precipitation	
ensemble	member	fcst	of	the	forecast,	 ,	of	the	forecast	by	simply	setting	(4)	
equal	to	(5),	and	determining	the	value	of	 	that	satisfies	the	equation.	In	this	
manner,	the	“observation-space”	quantile	is	matched	with	the	“forecast	model-
space”	quantile	as	shown	in	the	figure	below,	and	 	is	used	in	replace	of	 	in	
the	hydrometeorological	application.		
	
Note	that	this	technique	ensures	that	the	forecasts	produce	the	same	climatological	
number	of	“no	rain”	events	as	observed.	It	also	preserves	the	spatial	and	temporal	
(ranked)	covariances	of	the	weather	variable	forecast	fields	(as	generated	by	the	
numerical	weather	prediction	model	–	although	not	so	important	for	our	application	
of	catchment-integrated	values).	
	
If	there	is	no	contemporaneous	forecast	and	observational	data,	we	suggest	that	the	
q-to-q	technique	may	be	the	best	one	can	do	in	bringing	forecasts	into	statistical	
similarity	with	the	observations.	However,	although	the	mapping	improves	the	
forecast	bias	at	each	quantile	by	steering	the	forecasts	into	having	the	same	
frequency	of	events	as	the	observation	climatological	record,	this	process	still	does	
not	necessarily	ensure	that	the	forecasts’	skill	will	be	increased.	Such	skill	
degradation	can	(arbitrarily)	arise	because	the	technique	does	not	directly	improve	
the	forecast	model’s	reliability	by	neglecting	the	conditional	relationship	between	
observations	and	forecasts.	
	
	
	
	
	
	
	
	
	
	

Co
i (x) = P{X ≤ x},

and                                                   CM
i, f (y) = P{Y ≤ y},

y = pfcst
i, f

x = padj

padj pfcst
i, f
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Figure	38:	The	quantile-to-quantile	(q-to-q)	correction	system.	Both	modeled	and	observed	
precipitation	are	binned	into	quantiles.	The	model	precipitation	is	mapped	onto	the	observed	
precipitation	fields	by	setting	respective	modeled	quantiles	to	observed	quantiles.	In	the	figure,	the	
forecast	precipitation	(pfcst)	of	the	80th	quantile	is	set	to	observed	precipitation	(padj)	80th	quantile.		The	
method	ensures	that	the	forecasts	produce	the	same	number	of	“no	rain”	events	as	the	observations.		
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Appendix C -- Quantile Regression 
	

Quantile	regression	(QR)	has	been	little	used	in	the	atmospheric	and	hydrologic	
communities.	We	introduced	this	approach	for	this	project,	relaying	on	it	heavily	to	
generate	ensemble	forecasts	and	forecast	error	corrections	that	provide	reliable	
probabilities	of	what	values	the	river	flow	will	exceedance	on	a	daily	basis	(such	
that	“flat	histograms”	of	the	forecasts	are	produced	–	described	further	in	an	
appendix	below).	

Introduced	in	1978	(Koenker	and	Bassett,	1978),	quantile	regression	(QR)	is	an	
absolute	error	estimator	that	can	conditionally	fit	specific	quantiles	of	the	
regressand	distribution	(beyond	just	the	mean	or	median),	which	does	not	rely	on	
parametric	assumptions	of	how	either	the	regressand	or	residuals	are	distributed.	
And	by	virtue	of	being	an	l1-method,	the	conditional	fit	is	less	sensitive	to	outliers	
than	square	error	estimators	(Koenker	and	Portnoy	1997).	See	also	Bremnes	(2004)	
for	an	application	of	QR	to	calibrating	weather	variable	output.	Specifically,	let	{yi}	
represent	a	set	of	observations	of	the	regressand	y	of	interest,	and	{xi}	an	associated	
set	of	predictor	values.	Analogous	to	standard	linear	regression,	a	linear	function	of	
x	can	be	used	to	estimate	to	a	specific	quantile	qq	of	y	

  (3) 

with	residuals	 	and	 .	However,	instead	of	minimizing	the	
squared	residuals	as	with	standard	linear	regression,	in	QR	a	weighted	iterative	
minimization	of	{ri}	is	performed	over	b:		

  (4) 

with	weighting	function	

 . (5) 

	
	 In	addition	to	the	benefit	of	being	less	sensitive	to	outliers	compared	to	
standard	linear	regression,	QR	optimally	determines	the	relationship	of	a	regressor	
set	on	specific	quantiles	of	the	regressor,	with	no	parametric	assumptions.	This	
point	can	be	seen	in	the	figure	below	where,	by	way	of	example,	we	have	applied	
Eqs.	(1)	–	(3)	for	persistence	(previous	day’s	temperature)	as	a	forecast	of	24hr	July	
temperature	(Salt	Lake	City	airport	1979	to	2001;	discussed	below)	for	the	0.1,	0.5	
(median),	and	0.9	quantiles.	The	red	line	is	the	fit	for	the	central	tendency	(mean)	
using	standard	linear	regression;	the	middle	black	line	is	the	fit	of	the	median	(q0.5);	
upper	black	line	is	for	q0.9;	and	the	lower	black	for	q0.1.	Notice	the	similarity	but	
noticeable	divergence	of	the	median	and	mean	fits	for	larger	temperatures.	Notice	
also	the	heteroscedastic	behavior	of	the	persistence	QR	fitting,	which	is	seen	by	the	
convergence	of	the	0.1	and	0.9	quantile	lines	for	higher	temperatures.	Physically,	

qθ (xi;β) = β0 + βk xik
k=1

n

∑ + ri

ri = yi − qθ (xi;β) θ ∈(0,1)

min ρθ (ri )
i=1

n

∑ = argmin
β

ρθ (yi − qθ (xi;β))
i=1

n

∑

ρθ (u) =
θu u ≥ 0

(θ −1)u u < 0
⎧
⎨
⎪

⎩⎪
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such	behavior	can	be	justified	from	higher	temperatures	being	typically	associated	
with	high	pressure	anomalies,	which	have	longer	persistence	than	cold	front	
passages.	
	 Another	powerful	benefit	of	QR	is	that	the	cost	function	Eq	(3)	is	precisely	
associated	with	the	creation	of	a	flat	rank	histogram	verification,	which	itself	is	a	
necessary	requirement	for	a	calibrated	ensemble	forecast.	Here,	we	implicitly	define	
a	“calibrated	ensemble”	as	one	being	equivalent	to	a	random	draw	from	an	
underlying	(but	typically	unknown)	probability	distribution	function.	In	addition,	
although	QR	constrains	the	resultant	quantile	estimators	to	satisfying	this	
requirement,	at	the	same	time	it	also	constrains	the	estimators	to	optimal	
“sharpness”	(Wilks	1995;	i.e.	creating	“narrow”	forecast	PDFs	as	compared	to	a	
purely	climatological	distribution).	

	
	
Figure	39:	Previous	day’s	temperature	(persistence)	used	as	a	forecast	of	24hr	temperature,	Salt	Lake	City	
airport	data,	1979	to	2001.	Red	line	is	the	fit	for	the	central	tendency	(mean)	using	standard	linear	linear	
regression;	middle	black	line	is	the	fit	of	the	median	(0.5	quantile);	upper	black	0.9	quantile;	lower	black	0.1	
quantile.	Notice	the	similarity	but	noticeable	divergence	of	the	median	and	mean	fits	for	larger	temperatures.	
Notice	also	the	heteroscedastic	behavior	of	the	persistence	fitting,	which	is	seen	by	the	convergence	of	the	0.1	
and	0.9	quantile	lines	for	higher	temperatures.	
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Appendix D -- Verification Metrics 
		
	
In	this	appendix	we	discuss	the	verification	methods	applied	in	this	report.	
	

Verification and Evaluation Metrics 
	
In	this	appendix	we	briefly	discuss	the	three	evaluation	metrics	we	applied	in	this	
report	to	evaluate	the	rainfall	and	discharge	forecasting	systems	to	assess	their	skill	
and	calibration:	the	Brier	Score,	the	Brier	Skill	Score,	and	the	Rank	Histogram.	

The Brier Score 
The	Brier	score	is	a	function	that	measures	the	accuracy	of	probabilistic	predictions.	
It	is	applicable	to	tasks	in	which	predictions	must	assign	probabilities	to	a	set	of	
mutually	exclusive	discrete	outcomes.	The	set	of	possible	outcomes	can	be	either	
binary	or	categorical	in	nature,	and	the	probabilities	assigned	to	this	set	of	outcomes	
must	sum	to	one	(where	each	individual	probability	is	in	the	range	of	0	to	1).	
	
The	Brier	score	can	be	thought	of	as	a	measure	of	the	"skill"	of	a	set	of	probabilistic	
predictions.	More	precisely,	across	all	items	 	in	a	set	N	predictions,	the	
Brier	score	measures	the	mean	squared	difference	between:	

• The	predicted	probability	assigned	to	the	possible	outcomes	for	item	i	
• The	actual	outcome	 	

Therefore,	the	lower	the	Brier	score	is	for	a	set	of	predictions,	the	more	skillful	the	
predictions	are.	Note	that	the	Brier	score,	in	its	most	common	formulation,	takes	on	
a	value	between	zero	and	one,	since	this	is	the	largest	possible	difference	between	a	
predicted	probability	(which	must	be	between	zero	and	one)	and	the	actual	
outcome	(which	can	take	on	values	of	only	0	and	1).		
	
The	Brier	score	is	appropriate	for	binary	and	categorical	outcomes	that	can	be	
structured	as	true	or	false.	
	
The	most	common	formulation	of	the	Brier	score	is	

	
In	which	 	is	the	probability	that	was	forecast,	 	the	actual	outcome	of	the	event	at	
instance	t	(0	if	it	does	not	happen	and	1	if	it	does	happen)	and	N	is	the	number	of	
forecasting	instances.	In	effect,	it	is	the	mean	squared	error	of	the	forecast.	This	
formulation	is	mostly	used	for	binary	events	(for	example	"rain"	or	"no	rain").	
	
For	our	application,	the	binary	forecasting	event	we	use	is	whether	the	discharge	
will	be	above	or	below	the	upper	75th	percentile	of	flow	values	(i.e.	a	moderately	



                       
 

  Bihar Flood Management Improvement Support Centre                          77 

Implement and Operationalize a Customized Meteorological Framework 

extreme	flow	event),	so	we	test	for	how	well	the	forecast	system	can	anticipate	high	
flow	values.	
	

The Brier Skill Score 
Forecast	Skill	(or	skill	score)	is	a	generic	term	referring	to	the	accuracy	and/or	
degree	of	association	of	prediction	to	an	observation	or	estimate	of	the	actual	value	
of	the	predictand	(i.e.,	what	is	being	predicted).	The	term	'forecast	skill'	can	be	used	
both	quantitatively	and	qualitatively.	In	the	former	case,	skill	could	be	equal	to	a	
statistic	describing	forecast	performance,	such	as	the	correlation	of	the	forecast	
with	observations.	In	the	latter	case,	it	could	either	refer	to	forecast	performance	
according	to	a	single	metric,	such	as	our	case	of	the	Brier	Score.	Skill	is	often,	but	not	
exclusively,	expressed	as	the	relative	representation	that	compares	the	forecast	
performance	of	a	particular	forecast	prediction	to	that	of	a	reference,	benchmark	
prediction—a	formulation	called	a	'Skill	Score':	

.	
For	our	case,	our	skill	metric	“A”	is	the	Brier	Score	(BS,	described	above),	and	the	
“reference	forecast”	is	the	climatological	probability	of	the	event	occurring	(for	the	
upper	75%	events,	this	“climatological	probability”	is	0.25).	In	this	case,	a	perfect	
forecast	results	in	a	forecast	skill	metric	of	zero,	and	skill	score	value	of	1.0.	A	
forecast	with	equal	skill	to	the	reference	forecast	would	have	a	skill	score	of	0.0,	and	
a	forecast	which	is	less	skillful	than	the	reference	forecast	would	have	unbounded	
negative	skill	score	values.	

The Rank Histogram 
The	rank	histogram	is	not	a	verification	method	per	se,	but	rather	a	diagnostic	tool	
to	evaluate	the	spread	of	an	ensemble.	The	underlying	assumption	is	that	the	
ensemble	member	forecasts	are	distributed	so	as	to	delineate	ranges	or	"bins"	of	the	
predicted	variable	such	that	the	probability	of	occurrence	of	the	observation	within	
each	bin	is	equal.	For	each	specific	forecast,	the	bins	are	determined	by	ranking	the	
ensemble	member	forecasts	from	lowest	to	highest.	The	interval	between	each	pair	
of	ranked	values	forms	a	bin.	If	there	are	N	ensemble	members,	then	there	will	be	
N+1	bins.	The	outer	bins,	lowest	and	highest	–	valued,	are	open-ended.	
	
Rank	histograms	are	prepared	by	determining	which	of	the	ranked	bins	the	
observation	falls	into	for	each	case,	and	plotting	a	histogram	of	the	total	occurrences	
in	each	bin,	for	the	full	verification	sample.	It	is	desirable	to	use	a	large	sample	of	
cases	so	that	there	is	likely	to	be	some	occurrences	in	each	of	the	bins.	The	examples	
shown	in	the	figure	below	highlight	ensemble	forecasts	that	are	too	wide	(left	panel)	
and	too	narrow	(right	panel).	

SS =
Aforc − Aref
Aperf − Aref
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Figure	40:	Troubled	rank	histograms:	panel	on	the	left	shows	an	ensemble	forecast	system	whose	
ensembles	are	too	dispersed	(the	observation	falls	too	often	in	the	middle	of	the	distribution),	while	the	
panel	on	the	right	would	be	for	a	too	narrow	ensemble	forecasting	system.	For	a	perfect	ensemble	
forecasting	system,	rank	histograms	would	be	“flat”	(i.e.	the	observation	falling	into	each	bin	the	same	
number	of	times).	
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