Oceanic Convection Diagnosis and Nowcasting

Oceanic Convection Diagnosis and Nowcasting

Project Tabs - ROMIO Oceanic

Examples of the CTH and CDO polygon products
 
Examples of the CTH and CDO gridded products

Remote, oceanic regions have severely limited data availability and therefore, have few, if any, high resolution weather products that indicate current locations of convection. Convective hazards impact the safety, efficiency and economic viability of oceanic aircraft operations by producing turbulence, icing and lightning and by necessitating aircraft rerouting while in-flight, leading to higher fuel costs and delays. The Research Applications Laboratory is addressing oceanic weather needs for aviation through the development of convection diagnostic products. These products are the Cloud Top Height (CTH) and the Convection Diagnosis Oceanic (CDO). Both use geostationary satellite data as a primary input with the CDO also utilizing lightning data. These two products focus on the needs of pilots, dispatchers, air traffic managers and forecasters within the oceanic aviation community.

Prototype CTH/CDO products are now available. To request data access visit the tab above "Data Access".

CDO HOURLY EXTRAPOLATION FORECASTS, 0-8 HR

ITCZ REGIONS: ATLANTIC, SOUTH PACIFIC, CENTRAL PACIFIC

CONVECTION PRODUCT SUITE

CLOUD TOP HEIGHT DISPLAY

Atlantic Ocean

Pacific Ocean

Continental USA

GOES-East fullDisk

GOES-West fullDisk

GOES-East & GOES-West mosaic

CONVECTIVE WEATHER HAZARDS DISPLAY

GOES-East/West domain

CLOUD TOP HEIGHT (CTH)

Oceanic Convection Diagnosis and Nowcasting
The Cloud Top Height (CTH) product combines geostationary satellite Infrared data and numerical weather prediction output to create a detailed diagnosis of the estimated heights of convective cloud tops over the open ocean.

The Cloud Top Height (CTH) product combines geostationary satellite Infrared data and numerical weather prediction output to create a detailed diagnosis of the estimated heights of convective cloud tops over the open ocean. Provided that clouds are of sufficient optical thickness such that transmission from the lower atmosphere may be safely neglected (such as occurs within deep convection), the emitting temperature of the cloud across the ~11.0 micron window channel is assumed to be representative of the ambient environment. Soundings generated by the National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) numerical model are employed to convert the satellite brightness temperatures to flight-level altitudes (expressed in Kilo-feet). Specifically, the CTH makes a conversion from satellite brightness temperature to the equivalent GFS pressure surface. This pressure level is then used to interpolate to a standard atmosphere height. Similarly, aircraft altimeters also convert a pressure measurement to an equivalent altitude using the standard atmosphere.

The product performs for both day- and night-time hours and gives valid results for clouds with tops at and above 15,000 feet.

The Naval Research Laboratory in Monterey, CA (NRL-MRY) originally developed the CTH algorithm. The following reference applies:

Donovan, M.F., E.R. Williams, C. Kessinger, G. Blackburn, P.H. Herzegh, R.L. Bankert, S. Miller, and F.R. Mosher, 2006: The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations, Preprints-CD, 12th Conference on Aviation, Range and Aerospace Meteorology, AMS, Atlanta, GA, 30 January-2 February 2006.

REFERENCES

Bedka et al., 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients, J. Appl. Meteor. Clim., 49, 181-202.

Donovan et al., 2008: The identification and verification of hazardous convective cells over oceans using visible and infrared satellite observations, J. Appl. Meteor. Clim., 47, 164-184.

Donovan et al., 2009: An evaluation of a Convection Diagnosis Algorithm over the Gulf of Mexico using NASA TRMM Observations. 16th Conf. Satellite Meteor. Ocean., Amer. Meteor. Soc., Phoenix, AZ, 12-15 Jan 2009.

Frazier, E., C. Kessinger, T. Lindholm, J. Olivo, B. Barron, G. Blackburn, B. Watts, R. Stone, D. Keany, D. Tyler and T. J. Horsager, 2017: The Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration. World Meteorological Organization, Proceedings of the 2017 WMO Aeronautical Meteorology Scientific Conference, Toulouse, France, 6-10 November 2017, pages P2-94:P2-102.

Kessinger, C., et al., 2015: Demonstration of a Convective Weather Product into the Flight Deck. 17th Conf. Aviation, Range and Aerospace Meteorology, Amer. Meteor. Soc., 4-8 January 2015, paper 13.4.

Kessinger, C., et al., 2017: The global weather hazards project. 18th Conf. Aviation, Range and Aerospace Meteorology, Amer. Meteor. Soc., 23-26 January 2017, paper 9.3.

Kessinger, C., D. Megenhardt, G. Blackburn, J. Olivo, L. Lin, V. Hoang, M. Nayote, K. Sievers, A. Ritter, D. Wolf, O. Matz, R. Scheinhartz and J. Cahall, 2017: Displaying convective weather products on an electronic flight bag, The Journal of Air Traffic Control, 59 (3), 52-61.

Kessinger, C., 2017: An update on the Convection Diagnosis Oceanic Algorithm, 18th Conf. on Aviation, Range, and Aerospace Meteorology, American Meteorological Society, Seattle, WA, 22-26 Jan. 2017, poster 211.

Kessinger, C., E. Frazier, T. Lindholm, B. Barron, J. Olivo, B. Watts, R. Stone, S. Abelman, A. Trani, M. DeRis and C. Gill, 2019: “The Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration”, 19th AMS ARAM Conference, 7-10 Jan 2019, Phoenix, AZ.

Kessinger, C., E. Frazier, A. Izadi, A. Trani, T. Lindholm, J. Olivo, B. Watts, R. Stone, B. Norris, S. Abelman,  E. Senen, and K. Bharathan, 2020: “Remote Oceanic Meteorology Information Operational (ROMIO) Demonstration”, 20th AMS ARAM Conference, 12-16 Jan 2020, Boston, MA, paper 12.1.

Miller, S., et al., 2005: Technical Description of the Cloud Top Height (CTOP) Product, the first component of the Convective Diagnosis Oceanic (CDO) Product. Submitted to FAA AWRP, 11 March 2005, 30 pp.

Mosher, 2002: Detection of deep convection around the globe. Preprints, 10th Conf. Aviation, Range, Aerospace Meteor., Amer. Meteor. Soc., Portland, OR, 289-292.

CTH and CDO are gridded and polygon convective hazard products developed at the National Center for Atmospheric Research (NCAR/UCAR). These products have satisfied the requirements and been approved by the Federal Aviation Administration (FAA) Safety Review Management Panel (SRMP).

NCAR/UCAR is producing CTH and CDO output that can be made available through a license agreement to interested users. More information about the data feed and CTH/CDO data output is included in this document: User's Guide. If you are interested in receiving CTH/CDO data, please submit the contact information form below and we will contact you to set up the license agreement.

Privacy Statement: We collect this personal information as a requirement of our licensing agreement. Your information will not be used for any other purpose or distributed to any other entity. You will be asked to attest to having read and understood these terms at the end of the form below.

NOTE: NCAR/UCAR is not a 24x7 facility. We do not guarantee that CTH and CDO outputs are always available.

Additional street address information
Oceanic Convection Diagnosis and Nowcasting

Projects