The WRF-Hydro® Project develops leading edge hydrometeorological and hydrologic models and modeling support tools to investigate critical water issues around the globe. As an open platform, we strive to build and support a diverse and inclusive community of hydrologic scientists and practitioners to meet worldwide needs for water resource planning, hazard prediction and mitigation. Water itself is boundless; so should be the community that studies it. |
WRF-Hydro®, an open-source community model, is used for a range of projects, including flash flood prediction, regional hydroclimate impacts assessment, seasonal forecasting of water resources, and land-atmosphere coupling studies.
The underlying goal of WRF-Hydro® development is to improve prediction skill of hydrometeorological forecasts using science-based numerical prediction tools.
WRF-Hydro model output: Accumulated Precipitation (shaded colors), 100m gridded streamflow (points)
Scientists and society need a way to understand and predict how the complex components of the water cycle interact with the complexities of the landscape in order to provide data and information to address issues relating to water availability, water quality, hazards and impacts both in the short term and long term and across scales.
The Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro) was developed as a community-based, open source, model coupling framework designed to link multi-scale process models of the atmosphere and terrestrial hydrology to provide:
WRF-Hydro model output can supply forecasters and decision makers with locations and timing of rapid river stage increase as well as the duration of high waters and inundation while accounting for landscape dynamics essential to flood risks such as land cover change as well as the control effects of infrastructure such as dams and reservoirs.
The WRF-Hydro modeling system was originally designed as a model coupling framework to facilitate easier coupling between the Weather Research and Forecasting model and components of terrestrial hydrological models. WRF-Hydro is both a stand-alone hydrological modeling architecture as well as a coupling architecture for coupling of hydrological models with atmospheric models. WRF-Hydro is fully-parallelized to enable its usage on clusters and high performance computing systems alike.
Like the WRF model it does not attempt to prescribe a particular or singular suite of physics but, instead, is designed to be extensible to new hydrological parameterizations. Although it was originally designed to be used within the WRF model, it has evolved over time to possess many additional attributes as follows:
The architecture is intended to significantly simplify the often laborious task of integrating, or coupling, existing and emerging hydrological models into the WRF modeling framework. In doing so, an extensible, portable and scalable environment for hypothesis testing, sensitivity analysis, data assimilation and environmental prediction has emerged.
The WRF-Hydro system has adopted a ‘community-based’ development processes with an open and participatory working group environment. NCAR in collaboration with other NSF and university entities are developing a support structure for WRF-Hydro in the way of model documentation, public, online code repositories, test cases and many pre- and post-processing utilities.
The WRF-Hydro system has been applied for a wide range of research and operational prediction problems both in the U.S. and abroad. Specific past projects include flash flood prediction, regional hydroclimate impacts assessment, seasonal forecasting of water resources and land-atmosphere coupling studies. An important aspect of WRF-Hydro system has been serving as the core model for the new National Water Model.
The WRF-Hydro modeling system has been developed by the National Center for Atmospheric Research and its research partners through the generous support of the U.S. National Science Foundation and through research projects supported by the U.S. National Aeronautics and Space Administration (NASA) and the U.S. National Oceanic and Atmospheric Administration (NOAA).